首页> 外文OA文献 >Orca: A Language for Parallel Programming of Distributed Systems
【2h】

Orca: A Language for Parallel Programming of Distributed Systems

机译:Orca:分布式系统并行编程的语言

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Orca is a language for implementing parallel applications on loosely coupled distributed systems. Unlike most languages for distributed programming, it allows processes on different machines to share data. Such data are encapsulated in data-objects, which are instances of user-defined abstract data types. The implementation of Orca takes care of the physical distribution of objects among the local memories of the processors. In particular, an implementation may replicate and/or migrate objects in order to decrease access times to objects and increase parallelism. This paper gives a detailed description of the Orca language design and motivates the design choices. Orca is intended for applications programmers rather than systems programmers. This is reflected in its design goals to provide a simple, easy to use language that is type-secure and provides clean semantics. The paper discusses three example parallel applications in Orca, one of which is described in detail. It also describes one of the existing implementations, which is based on reliable broadcasting. Performance measurements of this system are given for three parallel applications. The measurements show that significant speedups can be obtained for all three applications. Finally, the paper compares Orca with several related languages and systems. © 1992 IEEE
机译:Orca是用于在松耦合的分布式系统上实现并行应用程序的语言。与大多数用于分布式编程的语言不同,它允许不同机器上的进程共享数据。此类数据封装在数据对象中,数据对象是用户定义的抽象数据类型的实例。 Orca的实现照顾对象在处理器的本地内存之间的物理分布。特别地,一种实现可以复制和/或迁移对象,以减少对对象的访问时间并增加并行度。本文详细介绍了Orca语言设计并激发了设计选择的动机。 Orca是面向应用程序程序员而非系统程序员的。这体现在其设计目标中,即提供一种类型安全的简单易用语言,并提供清晰的语义。本文讨论了Orca中的三个示例并行应用程序,其中一个得到了详细描述。它还描述了基于可靠广播的现有实现之一。针对三个并行应用给出了该系统的性能测量。测量结果表明,对于所有三种应用,都可以获得明显的加速。最后,本文将Orca与几种相关的语言和系统进行了比较。 ©1992 IEEE

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号