首页> 外文OA文献 >A transfer function approach for predicting rare cell capture microdevice performance
【2h】

A transfer function approach for predicting rare cell capture microdevice performance

机译:用于预测稀有细胞捕获微装置性能的传递函数方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rare cells have the potential to improve our understanding of biological systems and the treatment of a variety of diseases; each of those applications requires a different balance of throughput, capture efficiency, and sample purity. Those challenges, coupled with the limited availability of patient samples and the costs of repeated design iterations, motivate the need for a robust set of engineering tools to optimize application-specific geometries. Here, we present a transfer function approach for predicting rare cell capture in microfluidic obstacle arrays. Existing computational fluid dynamics (CFD) tools are limited to simulating a subset of these arrays, owing to computational costs; a transfer function leverages the deterministic nature of cell transport in these arrays, extending limited CFD simulations into larger, more complicated geometries. We show that the transfer function approximation matches a full CFD simulation within 1.34 %, at a 74-fold reduction in computational cost. Taking advantage of these computational savings, we apply the transfer function simulations to simulate reversing array geometries that generate a “notch filter” effect, reducing the collision frequency of cells outside of a specified diameter range. We adapt the transfer function to study the effect of off-design boundary conditions (such as a clogged inlet in a microdevice) on overall performance. Finally, we have validated the transfer function’s predictions for lateral displacement within the array using particle tracking and polystyrene beads in a microdevice.
机译:稀有细胞具有提高我们对生物系统和多种疾病治疗的理解的潜力;这些应用中的每一个都需要在通量,捕获效率和样品纯度之间取得不同的平衡。这些挑战,再加上患者样品的供应有限,以及重复设计迭代的成本,促使人们需要一套强大的工程工具来优化特定于应用的几何形状。在这里,我们提出了一种预测微流体障碍物阵列中稀有细胞捕获的传递函数方法。由于计算成本的原因,现有的计算流体动力学(CFD)工具仅限于模拟这些阵列的子集。传递函数充分利用了这些阵列中细胞运输的确定性,将有限的CFD模拟扩展到更大,更复杂的几何形状中。我们表明,传递函数近似值与1.34%以内的完整CFD模拟匹配,计算成本降低了74倍。利用这些节省的计算量,我们将传递函数模拟应用于模拟产生“陷波滤波器”效果的反向阵列几何形状,从而减少了超出指定直径范围的单元的碰撞频率。我们采用传递函数来研究非设计边界条件(例如微型设备的入口堵塞)对整体性能的影响。最后,我们使用微设备中的粒子跟踪和聚苯乙烯珠,验证了传递函数对阵列内横向位移的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号