首页> 外文OA文献 >Parsing Outdoor Scenes from Streamed 3D Laser Data Using Online Clustering and Incremental Belief Updates
【2h】

Parsing Outdoor Scenes from Streamed 3D Laser Data Using Online Clustering and Incremental Belief Updates

机译:使用在线聚类和增量信念更新从流式3D激光数据中解析室外场景

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we address the problem of continually parsing a stream of 3D point cloud data acquired from a laser sensor mounted on a road vehicle. We leverage an online star clustering algorithm coupled with an incremental belief update in an evolving undirected graphical model. The fusion of these techniques allows the robot to parse streamed data and to continually improve its understanding of the world. The core competency produced is an ability to infer object classes from similarities based on appearance and shape features, and to concurrently combine that with a spatial smoothing algorithm incorporating geometric consistency. This formulation of feature-space star clustering modulating the potentials of a spatial graphical model is entirely novel. In our method, the two sources of information: feature similarity and geometrical consistency are fed continu- ally into the system, improving the belief over the class distributions as new data arrives. The algorithm obviates the need for hand-labeled training data and makes no apriori assumptions on the number or characteristics of object categories. Rather, they are learnt incrementally over time from streamed input data. In experiments per- formed on real 3D laser data from an outdoor scene, we show that our approach is capable of obtaining an ever- improving unsupervised scene categorization.
机译:在本文中,我们解决了连续解析从安装在公路车辆上的激光传感器获取的3D点云数据流的问题。在不断发展的无向图形模型中,我们利用在线星团聚类算法与增量信念更新相结合。这些技术的融合使机器人能够解析流数据并不断提高其对世界的理解。产生的核心能力是根据外观和形状特征从相似性推断对象类别的能力,并将其与结合了几何一致性的空间平滑算法同时进行组合的能力。特征空间星团聚类的这种表述调制空间图形模型的潜力是完全新颖的。在我们的方法中,两个信息源:特征相似性和几何一致性被连续地输入到系统中,从而随着新数据的到来,提高了对类分布的信心。该算法消除了对手工标注训练数据的需求,并且对对象类别的数量或特征没有先验假设。而是从流式输入数据中逐步了解它们。在对来自室外场景的真实3D激光数据进行的实验中,我们证明了我们的方法能够获得不断改进的无监督场景分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号