首页> 外文OA文献 >Identifying evolving multivariate dynamics in individual and cohort time series, with application to physiological control systems
【2h】

Identifying evolving multivariate dynamics in individual and cohort time series, with application to physiological control systems

机译:确定个体和群组时间序列中不断演变的多变量动态,并应用于生理控制系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Physiological control systems involve multiple interacting variables operating in feedback loops that enhance an organism's ability to self-regulate and respond to internal and external disturbances. The resulting multivariate time-series often exhibit rich dynamical patterns, which are altered under pathological conditions. However, model identification for physiological systems is complicated by measurement artifacts and changes between operating regimes. The overall aim of this thesis is to develop and validate computational tools for identification and analysis of structured multivariate models of physiological dynamics in individual and cohort time-series. We first address the identification and stability of the respiratory chemoreflex system, which is key to the pathogenesis of sleep-induced periodic breathing and apnea. Using data from both an animal model of periodic breathing, as well as human recordings from clinical sleep studies, we demonstrate that model-based analysis of the interactions involved in spontaneous breathing can characterize the dynamics of the respiratory control system, and provide a useful tool for quantifying the contribution of various dynamic factors to ventilatory instability. The techniques have suggested novel approaches to titration of combination therapies, and clinical evaluations are now underway. We then study shared multivariate dynamics in physiological cohort time-series, assuming that the time-series are generated by switching among a finite collection of physiologically constrained dynamical models. Patients whose time-series exhibit similar dynamics may be grouped for monitoring and outcome prediction. We develop a novel parallelizable machine-learning algorithm for outcome-discriminative identification of the switching dynamics, using a probabilistic dynamic Bayesian network to initialize a deterministic neural network classifier. In validation studies involving simulated data and human laboratory recordings, the new technique significantly outperforms the standard expectation-maximization approach for identification of switching dynamics. In a clinical application, we show the prognostic value of assessing evolving dynamics in blood pressure time-series to predict mortality in a cohort of intensive care unit patients. A better understanding of the dynamics of physiological systems in both health and disease may enable clinicians to direct therapeutic interventions targeted to specific underlying mechanisms. The techniques developed in this thesis are general, and can be extended to other domains involving multi-dimensional cohort time-series.
机译:生理控制系统涉及多个相互作用的变量,这些变量在反馈回路中运行,从而增强了生物体自我调节并响应内部和外部干扰的能力。所得的多元时间序列通常表现出丰富的动力学模式,在病理条件下会发生变化。然而,由于测量伪影和操作方案之间的变化,生理系统的模型识别变得复杂。本文的总体目标是开发和验证用于识别和分析个体和队列时间序列中生理动力学结构化多元模型的计算工具。我们首先讨论呼吸化学反射系统的鉴定和稳定性,这是睡眠诱导的周期性呼吸和呼吸暂停的发病机理的关键。使用来自周期性呼吸的动物模型的数据以及来自临床睡眠研究的人类记录,我们证明了基于模型的自发呼吸相互作用的分析可以表征呼吸控制系统的动力学特性,并提供有用的工具用于量化各种动态因素对通气不稳定性的影响。该技术提出了滴定组合疗法的新方法,并且目前正在进行临床评估。然后,我们假设生理时间序列是通过在有限的生理约束动力学模型集合之间切换而生成的,研究了生理队列时间序列中的共享多元动力学。时间序列表现出相似动态的患者可以分组进行监测和结果预测。我们使用概率动态贝叶斯网络初始化确定性神经网络分类器,开发了一种新颖的可并行机器学习算法,用于基于结果的判别式切换动力学识别。在涉及模拟数据和人类实验室记录的验证研究中,这项新技术明显优于标准的期望最大化方法来识别开关动力学。在临床应用中,我们显示了评估血压时间序列动态变化以预测一组重症监护病房患者死亡率的预后价值。对健康和疾病中生理系统动力学的更好理解可能使临床医生能够针对特定潜在机制指导治疗干预。本文开发的技术是通用的,可以扩展到涉及多维队列时间序列的其他领域。

著录项

  • 作者

    Nemati Shamim 1980-;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号