首页> 外文OA文献 >The single pixel GPS: learning big data signals from tiny coresets
【2h】

The single pixel GPS: learning big data signals from tiny coresets

机译:单像素Gps:从微小的核心集学习大数据信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present algorithms for simplifying and clustering patterns from sensors such as GPS, LiDAR, and other devices that can produce high-dimensional signals. The algorithms are suitable for handling very large (e.g. terabytes) streaming data and can be run in parallel on networks or clouds. Applications include compression, denoising, activity recognition, road matching, and map generation.We encode these problems as (k, m)-segment mean problems. Formally, we provide (1 + ε)-approximations to the k-segment and (k, m)-segment mean of a d-dimensional discrete-time signal. The k-segment mean is a k-piecewise linear function that minimizes the regression distance to the signal. The (k,m)-segment mean has an additional constraint that the projection of the k segments on R[superscript d] consists of only m ≤ k segments. Existing algorithms for these problems take O(kn[superscript 2]) and n[superscript O(mk)] time respectively and O(kn[superscript 2]) space, where n is the length of the signal.Our main tool is a new coreset for discrete-time signals. The coreset is a smart compression of the input signal that allows computation of a (1 + ε)-approximation to the k-segment or (k,m)-segment mean in O(n log n) time for arbitrary constants ε,k, and m. We use coresets to obtain a parallel algorithm that scans the signal in one pass, using space and update time per point that is polynomial in log n. We provide empirical evaluations of the quality of our coreset and experimental results that show how our coreset boosts both inefficient optimal algorithms and existing heuristics. We demonstrate our results for extracting signals from GPS traces. However, the results are more general and applicable to other types of sensors.
机译:我们提出了用于简化和聚集来自GPS,LiDAR等传感器的模式的算法,这些传感器可以产生高维信号。该算法适用于处理非常大(例如TB)的流数据,并且可以在网络或云上并行运行。应用包括压缩,去噪,活动识别,道路匹配和地图生成。我们将这些问题编码为(k,m)段均值问题。形式上,我们提供d维离散时间信号的k段平均值和(k,m)段平均值(1 +ε)。 k段平均值是k分段线性函数,可最大程度地减少与信号的回归距离。 (k,m)段均值具有一个附加约束,即k个段在R [上标d]上的投影仅由m≤k个段组成。针对这些问题的现有算法分别占用O(kn [上标2])和n [上标O(mk)]时间以及O(kn [上标2])空间,其中n是信号的长度。我们的主要工具是用于离散时间信号的新内核集。核心集是对输入信号的智能压缩,它允许在任意常数ε,k的O(n log n)时间中计算k段或(k,m)段平均值的(1 +ε)近似值和m。我们使用核集来获得并行算法,该算法一次扫描信号,使用空间和每个点的更新时间(log n中的多项式)。我们提供了对核心集质量的实证评估和实验结果,这些结果表明了我们的核心集如何提高效率低的最佳算法和现有启发式算法。我们演示了从GPS轨迹提取信号的结果。但是,结果更为通用,可应用于其他类型的传感器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号