首页> 外文OA文献 >A tractable optimization framework for Air Traffic Flow Management addressing fairness, collaboration and stochasticity
【2h】

A tractable optimization framework for Air Traffic Flow Management addressing fairness, collaboration and stochasticity

机译:空中交通流量管理的易处理优化框架,解决公平性,协作性和随机性问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a tractable optimization framework for network Air Traffic Flow Management (ATFM) with an eye towards the future. The thesis addresses two issues in ATFM research: a) fairness and collaboration amongst airlines; and b) uncertainty inherent in capacity forecasts. A unifying attraction of the overall dissertation is that the Collaborative Decision-Making (CDM) paradigm, which is the current philosophy governing the design of new ATFM initiatives, is treated as the starting point in the research agenda. In the first part of the thesis, we develop an optimization framework to extend the CDM paradigm from a single-airport to a network setting by incorporating both fairness and airline collaboration. We introduce different notions of fairness emanating from a) First-Scheduled First-Served (FSFS) fairness; and b) Proportional fairness. We propose exact discrete optimization models to incorporate them. The first fairness paradigm which entails controlling number of reversals and total amount of overtaking is especially appealing in the ATFM context as it is a natural extension of Ration-By-Schedule (RBS). We allow for further airline collaboration by proposing discrete optimization models for slot reallocation. We provide empirical results of the proposed optimization models on national-scale, real world datasets that show interesting tradeoffs between fairness and efficiency. In particular, schedules close to the RBS policy (with single digit reversals) are possible for a less than 10% increase in delay costs. We utilize case studies to highlight the considerable improvements in the internal objective functions of the airlines as a result of slot exchanges. Finally, the proposed models are computationally tractable (running times of less than 30 minutes). In the second part, we address the important issue of capacity uncertainty by presenting the first application of robust and adaptive optimization in the ATFM problem. We introduce a weather-front based approach to model the uncertainty inherent in airspace capacity estimates resulting from the impact of a small number of weather fronts. We prove the equivalence of the robust problem to a modified instance of the deterministic problem; solve the LP relaxation of the adaptive problem using affine policies; and report extensive empirical results to study the inherent tradeoffs.
机译:我们提出了面向未来的网络空中交通流量管理(ATFM)的易于处理的优化框架。该论文解决了空中交通流量管理研究中的两个问题:a)航空公司之间的公平与合作; b)容量预测固有的不确定性。整个论文的一个统一的吸引力是,协作决策(CDM)范式是当前研究新空中交通流量管理计划设计的理念,被视为研究议程的起点。在本文的第一部分,我们通过结合公平性和航空公司合作,开发了一个优化框架,以将CDM范式从单一机场扩展到网络环境。我们引入以下不同的公平概念:a)优先安排的先服务(FSFS)公平; b)比例公平。我们提出了精确的离散优化模型来合并它们。第一个公平范式要求控制逆转次数和超车总量,这在ATFM背景下尤其具有吸引力,因为它是Ration-By-Schedule(RBS)的自然延伸。我们通过提出用于插槽重新分配的离散优化模型来允许航空公司进一步合作。我们在国家级的真实世界数据集上提供建议的优化模型的经验结果,这些数据显示了公平性和效率之间的有趣权衡。特别是,接近RBS策略的计划(具有一位数反转)可能使延迟成本增加不到10%。我们利用案例研究来强调由于换乘航班而在航空公司内部目标功能方面的显着改进。最后,所提出的模型在计算上易于处理(运行时间少于30分钟)。在第二部分中,我们通过介绍鲁棒和自适应优化在ATFM问题中的首次应用来解决容量不确定性的重要问题。我们引入了一种基于天气前线的方法来对由于少数天气前线的影响而导致的空域容量估计固有的不确定性建模。我们证明了鲁棒问题与确定性问题的修改实例的等价性。使用仿射策略解决自适应问题的LP松弛;并报告广泛的经验结果以研究内在的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号