首页> 外文OA文献 >Structure-based algorithms for protein-protein interaction prediction
【2h】

Structure-based algorithms for protein-protein interaction prediction

机译:基于结构的蛋白质 - 蛋白质相互作用预测算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein-protein interactions (PPIs) play a central role in all biological processes. Akin to the complete sequencing of genomes, complete descriptions of interactomes is a fundamental step towards a deeper understanding of biological processes, and has a vast potential to impact systems biology, genomics, molecular biology and therapeutics. PPIs are critical in maintenance of cellular integrity, metabolism, transcription/ translation, and cell-cell communication. This thesis develops new methods that significantly advance our efforts at structure- based approaches to predict PPIs and boost confidence in emerging high-throughput (HTP) data. The aims of this thesis are, 1) to utilize physicochemical properties of protein interfaces to better predict the putative interacting regions and increase coverage of PPI prediction, 2) increase confidence in HTP datasets by identifying likely experimental errors, and 3) provide residue-level information that gives us insights into structure-function relationships in PPIs. Taken together, these methods will vastly expand our understanding of macromolecular networks. In this thesis, I introduce two computational approaches for structure-based proteinprotein interaction prediction: iWRAP and Coev2Net. iWRAP is an interface threading approach that utilizes biophysical properties specific to protein interfaces to improve PPI prediction. Unlike previous structure-based approaches that use single structures to make predictions, iWRAP first builds profiles that characterize the hydrophobic, electrostatic and structural properties specific to protein interfaces from multiple interface alignments. Compatibility with these profiles is used to predict the putative interface region between the two proteins. In addition to improved interface prediction, iWRAP provides better accuracy and close to 50% increase in coverage on genome-scale PPI prediction tasks. As an application, we effectively combine iWRAP with genomic data to identify novel cancer related genes involved in chromatin remodeling, nucleosome organization and ribonuclear complex assembly - processes known to be critical in cancer. Coev2Net addresses some of the limitations of iWRAP, and provides techniques to increase coverage and accuracy even further. Unlike earlier sequence and structure profiles, Coev2Net explicitly models long-distance correlations at protein interfaces. By formulating interface co-evolution as a high-dimensional sampling problem, we enrich sequence/structure profiles with artificial interacting homologus sequences for families which do not have known multiple interacting homologs. We build a spanning-tree based graphical model induced by the simulated sequences as our interface profile. Cross-validation results indicate that this approach is as good as previous methods at PPI prediction. We show that Coev2Net's predictions correlate with experimental observations and experimentally validate some of the high-confidence predictions. Furthermore, we demonstrate how analysis of the predicted interfaces together with human genomic variation data can help us understand the role of these mutations in disease and normal cells.
机译:蛋白质-蛋白质相互作用(PPI)在所有生物过程中都起着核心作用。类似于基因组的完整测序,对相互作用组的完整描述是迈向更深入地了解生物学过程的基本步骤,并且具有影响系统生物学,基因组学,分子生物学和治疗学的巨大潜力。 PPI对维持细胞完整性,代谢,转录/翻译和细胞间通讯至关重要。本文提出了新的方法,这些方法极大地促进了我们在基于结构的方法中预测PPI并增强对新兴高通量(HTP)数据的信心的方法。本文的目的是:1)利用蛋白质界面的理化特性更好地预测推定的相互作用区域并增加PPI预测的覆盖范围; 2)通过识别可能的实验错误来增加对HTP数据集的置信度; 3)提供残基水平这些信息使我们能够洞悉PPI中的结构功能关系。总之,这些方法将极大地扩展我们对大分子网络的理解。在本文中,我介绍了两种基于结构的蛋白质相互作用预测的计算方法:iWRAP和Coev2Net。 iWRAP是一种接口线程化方法,利用蛋白质接口特有的生物物理特性来改善PPI预测。与以前的使用单一结构进行预测的基于结构的方法不同,iWRAP首先通过多种界面比对构建可表征蛋白质界面特有的疏水,静电和结构特性的特性文件。与这些图谱的相容性用于预测两种蛋白质之间的假定界面区域。除了改进的界面预测外,iWRAP还提供了更高的准确性,并且在基因组规模的PPI预测任务上的覆盖率提高了近50%。作为一种应用,我们有效地将iWRAP与基因组数据结合起来,以鉴定出与染色质重塑,核小体组织和核糖核酸复杂组装有关的新型癌症相关基因,这些过程在癌症中至关重要。 Coev2Net解决了iWRAP的一些局限性,并提供了进一步提高覆盖范围和准确性的技术。与早期的序列和结构图不同,Coev2Net在蛋白质界面上显式地对长距离相关性进行建模。通过将接口共同进化公式化为一个高维采样问题,我们用人工相互作用的同源序列丰富了序列/结构图谱,而这些同源序列没有已知的多个相互作用的同源序列。我们建立了一个基于生成树的图形模型,该图形模型是由模拟序列作为我们的接口配置文件导出的。交叉验证结果表明,该方法与PPI预测中的先前方法一样好。我们显示Coev2Net的预测与实验观察结果相关,并通过实验验证了一些高可信度的预测。此外,我们证明了对预测界面的分析以及人类基因组变异数据如何能够帮助我们了解这些突变在疾病和正常细胞中的作用。

著录项

  • 作者

    Hosur Raghavendra;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号