首页> 外文OA文献 >Physically constrained maximum likelihood (PCML) mode filtering and its application as a pre-processing method for underwater acoustic communication
【2h】

Physically constrained maximum likelihood (PCML) mode filtering and its application as a pre-processing method for underwater acoustic communication

机译:物理约束最大似然(pCmL)模式滤波及其作为水声通信的预处理方法的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mode filtering is most commonly implemented using the sampled mode shape or pseudoinverse algorithms. Buck et al [1] placed these techniques in the context of a broader maximum a posteriori (MAP) framework. However, the MAP algorithm requires that the signal and noise statistics be known a priori. Adaptive array processing algorithms are candidates for improving performance without the need for a priori signal and noise statistics. A variant of the physically constrained, maximum likelihood (PCML) algorithm [2] is developed for mode filtering that achieves the same performance as the MAP mode filter yet does not need a priori knowledge of the signal and noise statistics. The central innovation of this adaptive mode filter is that the received signal's sample covariance matrix, as estimated by the algorithm, is constrained to be that which can be physically realized given a modal propagation model and an appropriate noise model. The first simulation presented in this thesis models the acoustic pressure field as a complex Gaussian random vector and compares the performance of the pseudoinverse, reduced rank pseudoinverse, sampled mode shape, PCML minimum power distortionless response (MPDR), PCML-MAP, and MAP mode filters. The PCML-MAP filter performs as well as the MAP filter without the need for a priori data statistics. The PCML-MPDR filter performs nearly as well as the MAP filter as well, and avoids a sawtooth pattern that occurs with the reduced rank pseudoinverse filter. The second simulation presented models the underwater environment and broadband communication setup of the Shallow Water 2006 (SW06) experiment.
机译:模式过滤最通常使用采样的模式形状或伪逆算法来实现。 Buck等人[1]将这些技术放在更广泛的最大后验(MAP)框架中。但是,MAP算法要求先验地知道信号和噪声统计信息。自适应阵列处理算法是无需考虑先验信号和噪声统计即可提高性能的候选方法。开发了一种物理受限最大似然算法(PCML)算法的变体[2]用于模式滤波,该算法可实现与MAP模式滤波器相同的性能,但无需先验信号和噪声统计信息。这种自适应模式滤波器的主要创新在于,通过算法估算,接收信号的样本协方差矩阵被约束为可以在给定模态传播模型和适当的噪声模型的情况下物理实现的矩阵。本文提出的第一个模拟将声压场建模为一个复杂的高斯随机矢量,并比较伪逆,降秩伪逆,采样模式形状,PCML最小功率无失真响应(MPDR),PCML-MAP和MAP模式的性能过滤器。 PCML-MAP过滤器的性能与MAP过滤器一样好,而无需先验数据统计。 PCML-MPDR过滤器的性能几乎与MAP过滤器一样好,并且避免了锯齿形出现在降秩伪逆过滤器中。进行的第二次模拟对Shallow Water 2006(SW06)实验的水下环境和宽带通信设置进行了建模。

著录项

  • 作者

    Papp Joseph C;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号