首页> 外文OA文献 >Multiscale Gaussian graphical models and algorithms for large-scale inference
【2h】

Multiscale Gaussian graphical models and algorithms for large-scale inference

机译:用于大规模推理的多尺度高斯图形模型和算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Graphical models provide a powerful framework for stochastic processes by representing dependencies among random variables compactly with graphs. In particular, multiscale tree-structured graphs have attracted much attention for their computational efficiency as well as their ability to capture long-range correlations. However, tree models have limited modeling power that may lead to blocky artifacts. Previous works on extending trees to pyramidal structures resorted to computationally expensive methods to get solutions due to the resulting model complexity. In this thesis, we propose a pyramidal graphical model with rich modeling power for Gaussian processes, and develop efficient inference algorithms to solve large-scale estimation problems. The pyramidal graph has statistical links between pairs of neighboring nodes within each scale as well as between adjacent scales. Although the graph has many cycles, its hierarchical structure enables us to develop a class of fast algorithms in the spirit of multipole methods. The algorithms operate by guiding far-apart nodes to communicate through coarser scales and considering only local interactions at finer scales. The consistent stochastic structure of the pyramidal graph provides great flexibilities in designing and analyzing inference algorithms. Based on emerging techniques for inference on Gaussian graphical models, we propose several different inference algorithms to compute not only the optimal estimates but also approximate error variances as well. In addition, we consider the problem of rapidly updating the estimates based on some new local information, and develop a re-estimation algorithm on the pyramidal graph. Simulation results show that this algorithm can be applied to reconstruct discontinuities blurred during the estimation process or to update the estimates to incorporate a new set of measurements introduced in a local region.
机译:图形模型通过用图紧凑地表示随机变量之间的依赖关系,为随机过程提供了强大的框架。尤其是,多尺度树状结构图因其计算效率以及捕获远程相关性的能力而备受关注。但是,树模型的建模能力有限,可能会导致块状伪像。由于产生的模型复杂性,先前关于将树扩展到金字塔结构的工作诉诸于计算上昂贵的方法来获得解决方案。本文提出了一种具有高斯建模能力的金字塔图形模型,并对高斯过程进行了建模,并开发了有效的推理算法来解决大规模估计问题。金字塔图在每个比例内的相邻节点对之间以及相邻比例之间具有统计链接。尽管该图具有许多循环,但是其层次结构使我们能够本着多极方法的精神开发一类快速算法。该算法通过引导相距较远的节点通过较粗的规模进行通信,并仅考虑较细规模的本地交互来进行操作。金字塔图的一致的随机结构为设计和分析推理算法提供了极大的灵活性。基于新兴的高斯图形模型推理技术,我们提出了几种不同的推理算法,不仅可以计算最佳估计值,还可以计算近似误差方差。此外,我们考虑了基于一些新的局部信息快速更新估计值的问题,并在金字塔图上开发了一种重新估计算法。仿真结果表明,该算法可用于重建在估计过程中模糊的不连续性,或更新估计以合并引入局部区域的一组新的测量值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号