首页> 外文OA文献 >Model predictive control for ascent load management of a reusable launch vehicle
【2h】

Model predictive control for ascent load management of a reusable launch vehicle

机译:用于可重复使用运载火箭的上升负载管理的模型预测控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During the boost phase of ascent, winds have a significant impact on a launch vehicle's angle of attack, and can induce large structural loads on the vehicle. Traditional methods for mitigating these loads involve measuring the winds prior to launch and designing trajectories to minimize the vehicle angle of attack (a). The current balloon-based method of collecting wind field information produces wind profiles with significant uncertainty due to the inherent time delays associated with balloon measurement procedures. Managing the mission risk caused by these uncertain wind measurements has always been important to control system designers. This thesis will describe a novel approach to managing structural loads through the combination of a Light Detection and Ranging (LIDAR) wind sensor, and Model Predictive Control (MPC). LIDAR wind sensors can provide near real-time wind measurements, significantly reducing wind uncertainty at launch. MPC takes full advantage of this current wind information through a unique combination of proactive control, constraint integration and tuning flexibility. This thesis describes the development of two types of MPC controllers, as well as a baseline controller representative of current control methods used by industry. A complete description of Model Predictive Control theory and derivation of the necessary control matrices is included. The performance of each MPC controller is compared to that of the baseline controller for a wide range of wind profiles from both the Eastern and Western U.S. Test Ranges. Both MPC controllers are shown to provide reductions of greater than 50% in a, Qa and structural bending moments. In addition, the effects of wind measurement delays and uncertainty on the performance of each controller are investigated.
机译:在上升的助推阶段,风对运载火箭的迎角具有重大影响,并且会在运载工具上引起较大的结构载荷。减轻这些载荷的传统方法包括在发射前测量风速并设计轨迹以最小化车辆的迎角(a)。由于与气球测量过程相关的固有时间延迟,当前基于气球的收集风场信息的方法产生的风廓线具有明显的不确定性。管理这些不确定的风量测量导致的任务风险对控制系统设计人员一直很重要。本文将介绍一种通过光检测和测距(LIDAR)风传感器和模型预测控制(MPC)组合来管理结构载荷的新颖方法。 LIDAR风传感器可以提供近乎实时的风测量,从而大大降低了发射时的风不确定性。 MPC通过主动控制,约束集成和调整灵活性的独特组合,充分利用了当前的风信息。本文描述了两种类型的MPC控制器的开发以及代表当前工业控制方法的基线控制器。包括模型预测控制理论的完整描述以及必要控制矩阵的推导。在来自美国东部和西部测试范围的广泛风廓线下,将每个MPC控制器的性能与基准控制器的性能进行了比较。两种MPC控制器均显示出在a,Qa和结构弯矩方面的降低超过50%。此外,还研究了风速测量延迟和不确定性对每个控制器性能的影响。

著录项

  • 作者

    Martin Andrew Allen 1977-;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号