首页> 外文OA文献 >Semidefinite relaxation based branch-and-bound method for nonconvex quadratic programming
【2h】

Semidefinite relaxation based branch-and-bound method for nonconvex quadratic programming

机译:基于半定松弛的非凸二次规划的分枝定界方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, we use a semidefinite relaxation based branch-and-bound method to solve nonconvex quadratic programming problems. Firstly, we show an interval branch-and-bound method to calculate the bounds for the minimum of bounded polynomials. Then we demonstrate four SDP relaxation methods to solve nonconvex Box constrained Quadratic Programming (BoxQP) problems and the comparison of the four methods. For some lower dimensional problems, SDP relaxation methods can achieve tight bounds for the BoxQP problem; whereas for higher dimensional cases (more than 20 dimensions), the bounds achieved by the four Semidefinite programming (SDP) relaxation methods are always loose. To achieve tight bounds for higher dimensional BoxQP problems, we combine the branch-and-bound method and SDP relaxation method to develop an SDP relaxation based branch-and-bound (SDPBB) method. We introduce a sensitivity analysis method for the branching process of SDPBB. This sensitivity analysis method can improve the convergence speed significantly.
机译:本文采用基于半定松弛的分支定界方法来解决非凸二次规划问题。首先,我们展示了一种区间分支定界方法来计算有界多项式的最小值。然后,我们演示了四种SDP松弛方法来解决非凸盒约束二次规划(BoxQP)问题,并比较了这四种方法。对于一些较低维的问题,SDP​​松弛方法可以为BoxQP问题获得严格的界限。而对于高维情况(超过20个维),通过四种半定规划(SDP)松弛方法所达到的界限始终是宽松的。为了解决高维BoxQP问题的紧密边界,我们结合了分支定界方法和SDP松弛方法来开发基于SDP松弛的分支定界(SDPBB)方法。我们介绍了SDPBB分支过程的敏感性分析方法。这种敏感性分析方法可以显着提高收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号