首页> 外文OA文献 >Robust trajectory planning for unmanned aerial vehicles in uncertain environments
【2h】

Robust trajectory planning for unmanned aerial vehicles in uncertain environments

机译:不确定环境下无人机的鲁棒弹道规划

摘要

As unmanned aerial vehicles (UAVs) take on more prominent roles in aerial missions, it becomes necessary to increase the level of autonomy available to them within the mission planner. In order to complete realistic mission scenarios, the UAV must be capable of operating within a complex environment, which may include obstacles and other no-fly zones. Additionally, the UAV must be able to overcome environmental uncertainties such as modeling errors, external disturbances, and an incomplete situational awareness. By utilizing planners which can autonomously navigate within such environments, the cost-effectiveness of UAV missions can be dramatically improved.This thesis develops a UAV trajectory planner to efficiently identify and execute trajectories which are robust to a complex, uncertain environment. This planner, named Efficient RSBK, integrates previous mixed-integer linear programming (MILP) path planning algorithms with several implementation innovations to achieve provably robust on-line trajectory optimization. Using the proposed innovations, the planner is able to design intelligent long-term plans using a minimal number of decision variables. The effectiveness of this planner is demonstrated with both simulation results and flight experiments on a quadrotor testbed.Two major components of the Efficient RSBK framework are the robust model predictive control (RMPC) scheme and the low-level planner. This thesis develops a generalized framework to investigate RMPC affine feedback policies on the disturbance, identify relative strengths and weaknesses, and assess suitability for the UAV trajectory planning problem. A simple example demonstrates that even with a conventional problem setup, the closed-loop performance may not always improve with additional decision variables, despite the resulting increase in computational complexity. A compatible low-level troller is also introduced which significantly improves trajectory-following accuracy, as demonstrated by additional flight experiments.
机译:由于无人飞行器(UAV)在空中任务中扮演着更加重要的角色,因此有必要提高任务计划者在飞行任务中的自主性。为了完成现实的任务场景,无人机必须能够在复杂的环境中运行,其中可能包括障碍物和其他禁飞区。此外,无人机必须能够克服环境不确定性,例如建模错误,外部干扰和不完整的态势感知。通过利用可以在这种环境中自主导航的计划器,可以显着提高无人机任务的成本效益。本文开发了一种无人机轨迹计划器,可以有效地识别和执行对复杂,不确定环境而言稳健的轨迹。这位名为Efficient RSBK的计划人员将先前的混合整数线性规划(MILP)路径规划算法与多项实现创新相集成,以实现可证明的强大的在线轨迹优化。通过使用提出的创新,计划人员可以使用最少数量的决策变量来设计智能的长期计划。在四旋翼试验台上的仿真结果和飞行实验都证明了该计划程序的有效性。有效RSBK框架的两个主要组成部分是鲁棒模型预测控制(RMPC)方案和低级计划程序。本文建立了一个通用的框架,用于研究扰动的RMPC仿射反馈策略,确定相对优势和劣势,并评估对无人机轨迹规划问题的适用性。一个简单的例子表明,即使使用传统的问题设置,闭环性能也可能不会始终随着其他决策变量而提高,尽管会导致计算复杂性的增加。还引入了兼容的低空拖钓器,这可以显着提高轨迹跟踪的准确性,如其他飞行实验所示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号