首页> 外文OA文献 >Acoustic landmark detection and segmentation using the McAulay-Quatieri Sinusoidal Model
【2h】

Acoustic landmark detection and segmentation using the McAulay-Quatieri Sinusoidal Model

机译:使用mcaulay-Quatieri正弦模型进行声学界标检测和分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The current method for phonetic landmark detection in the Spoken Language Systems Group at MIT is performed by SUMMIT, a segment-based speech recognition system. Under noisy conditions the system's segmentation algorithm has difficulty distinguishing between noise and speech components and often produces a poor alignment of sounds. Noise robustness in SUMMIT can be improved using a full segmentation method, which allows landmarks at regularly spaced intervals. While this approach is computationally more expensive than the original segmentation method, it is more robust under noisy environments. In this thesis, we explore a landmark detection and segmentation algorithm using the McAulay-Quatieri Sinusoidal Model, in hopes of improving the performance of the recognizer in noisy conditions. We first discuss the sinusoidal model representation, in which rapid changes in spectral components are tracked using the concept of "birth" and "death" of underlying sinewaves. Next, we describe our method of landmark detection with respect to the behavior of sinewave tracks generated from this model. These landmarks are interconnected together to form a graph of hypothetical segments.
机译:麻省理工学院口语系统集团中用于语音界标检测的当前方法由SUMMIT(基于片段的语音识别系统)执行。在嘈杂的条件下,系统的分割算法很难区分噪声和语音成分,并且通常会产生不良的声音对齐效果。可以使用完整的分割方法来提高SUMMIT中的噪声鲁棒性,该方法可以按固定的间隔放置地标。尽管此方法在计算上比原始分割方法更昂贵,但在嘈杂的环境下更健壮。在本文中,我们探索使用McAulay-Quatieri正弦模型的路标检测和分割算法,以期在嘈杂的条件下提高识别器的性能。我们首先讨论正弦模型表示,其中使用正弦波的“出生”和“死亡”概念跟踪频谱分量的快速变化。接下来,我们针对从该模型生成的正弦波轨迹的行为描述我们的地标检测方法。这些界标相互连接在一起,以形成假设部分的图形。

著录项

  • 作者

    Sainath Tara N;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号