首页> 外文OA文献 >Large-margin Gaussian mixture modeling for automatic speech recognition
【2h】

Large-margin Gaussian mixture modeling for automatic speech recognition

机译:用于自动语音识别的大边缘高斯混合建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Discriminative training for acoustic models has been widely studied to improve the performance of automatic speech recognition systems. To enhance the generalization ability of discriminatively trained models, a large-margin training framework has recently been proposed. This work investigates large-margin training in detail, integrates the training with more flexible classifier structures such as hierarchical classifiers and committee-based classifiers, and compares the performance of the proposed modeling scheme with existing discriminative methods such as minimum classification error (MCE) training. Experiments are performed on a standard phonetic classification task and a large vocabulary speech recognition (LVCSR) task. In the phonetic classification experiments, the proposed modeling scheme yields about 1.5% absolute error reduction over the current state of the art. In the LVCSR experiments on the MIT lecture corpus, the large-margin model has about 6.0% absolute word error rate reduction over the baseline model and about 0.6% absolute error rate reduction over the MCE model.
机译:声学模型的判别训练已得到广泛研究,以提高自动语音识别系统的性能。为了提高判别训练模型的泛化能力,最近提出了一种大幅度训练框架。这项工作详细调查了大利润训练,将训练与更灵活的分类器结构(例如分层分类器和基于委员会的分类器)集成在一起,并将建议的建模方案的性能与现有的判别方法(例如最小分类误差(MCE)训练)进行了比较。实验是在标准语音分类任务和大词汇量语音识别(LVCSR)任务上进行的。在语音分类实验中,提出的建模方案在当前技术水平上的绝对误差降低了约1.5%。在MIT演讲语料库的LVCSR实验中,大利润率模型的绝对单词错误率比基线模型降低了约6.0%,而MCE模型的绝对错误率降低了0.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号