首页> 外文OA文献 >A Trainable Object Detection System: Car Detection in Static Images
【2h】

A Trainable Object Detection System: Car Detection in Static Images

机译:一种可训练物体检测系统:静态图像中的汽车检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper describes a general, trainable architecture for object detection that has previously been applied to face and peoplesdetection with a new application to car detection in static images. Our technique is a learning based approach that uses a set of labeled training data from which an implicit model of an object class -- here, cars -- is learned. Instead of pixel representations that may be noisy and therefore not provide a compact representation for learning, our training images are transformed from pixel space to that of Haar wavelets that respond to local, oriented, multiscale intensity differences. These feature vectors are then used to train a support vector machine classifier. The detection of cars in images is an important step in applications such as traffic monitoring, driver assistance systems, and surveillance, among others. We show several examples of car detection on out-of-sample images and show an ROC curve that highlights the performance of our system.
机译:本文介绍了一种通用的,可训练的对象检测体系结构,该体系结构先前已应用于人脸检测和人脸检测,并将其应用于静态图像中的汽车检测。我们的技术是一种基于学习的方法,它使用一组标记的训练数据,从中可以学习对象类(在这里是汽车)的隐式模型。代替可能嘈杂的像素表示,因此不能为学习提供紧凑的表示,我们的训练图像从像素空间转换为响应局部,定向的多尺度强度差异的Haar小波。然后将这些特征向量用于训练支持向量机分类器。图像中的汽车检测是交通监控,驾驶员辅助系统和监视等应用程序中的重要一步。我们在样本外图像上显示了一些汽车检测示例,并显示了ROC曲线,突出了我们系统的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号