首页> 外文OA文献 >A preconditioned Newton-Krylov method for computing steady-state pulse solutions of mode-locked lasers
【2h】

A preconditioned Newton-Krylov method for computing steady-state pulse solutions of mode-locked lasers

机译:用于计算锁模激光器稳态脉冲解的预处理Newton-Krylov方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We solve the periodic boundary value problem for a mode-locked laser cavity using a specially preconditioned matrix-implicit Newton-Krylov solver. Solutions are obtained at least an order of magnitude faster than with dynamic simulation, the standard method. Our method is demonstrated experimentally on a one-dimensional temporal model of an eight femtosecond mode-locked laser operating in the dispersion-managed soliton regime. Our solver is applicable to finding the steady-state solution of any nonlinear optical cavity with moderate self phase modulation, such as those of solid state lasers, and requires only a model for the round-trip action of the cavity. We conclude by proposing avenues of future work to improve the method's convergence and expand its applicability to lasers with higher degrees of cavity nonlinearity. Our approach can be extended to spatio-temporal cavity models, potentially allowing for the first feasible simulation of the full dynamics of Kerr-lens mode locking.
机译:我们使用特殊预处理的矩阵隐式Newton-Krylov求解器解决了锁模激光腔的周期边值问题。与标准方法动态仿真相比,求解速度至少快了一个数量级。我们的方法是在色散管理孤子域中运行的八飞秒锁模激光器的一维时间模型上进行实验证明的。我们的求解器适用于寻找具有适度自相位调制的任何非线性光学腔的稳态解,例如固态激光器的稳态解,并且仅需要用于腔的往返动作的模型。最后,我们提出了今后工作的途径,以改善该方法的收敛性,并将其扩展到具有更高腔非线性度的激光器中。我们的方法可以扩展到时空腔模型,可能允许对Kerr-lens锁模的全部动力学进行第一个可行的模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号