首页> 外文OA文献 >Hybrid silicon/silicon carbide microstructures and silicon bond strength tests for the MIT Microengine
【2h】

Hybrid silicon/silicon carbide microstructures and silicon bond strength tests for the MIT Microengine

机译:mIT微引擎的混合硅/碳化硅微结构和硅键强度测试

摘要

The Gas Turbine Laboratory (GTL) and the Microsystems Technology Laboratory (MTL) at the Massachusetts Institute of Technology initiated a joint effort to develop a series MEMS-based turbine engines and turbo generators in 1995. This thesis focuses on two independent research topics: first, the use of hybrid silicon/silicon carbide structures to extend the operating envelope of the first generation microengine, and second, a testing technique to measure the toughness of silicon to silicon fusion bonds. Due to the relatively low strength of Si at high temperatures, the all-silicon demonstration device does not yet meet the design specifications. The introduction of limited amounts of SiC in the turbine disc and turbine blades can increase the temperature tolerance of the rotating structure by 150-200K. A turbine disc with a 30% SiC core, and hollow turbine blades with a 300pim tall SiC core yield significant improvements in the microengine performance when compared to the all-silicon baseline design: 30% increase in compressor pressure ratio and fourfold increase in shaft power output. However, more aggressive cooling schemes or re-design of the rotating spool is needed for further improvements. Fabrication of the hybrid structures is compatible with the current microengine process flow, although some key SiC process steps must be developed further. A testing technique has been developed to measure the toughness of Si-Si fusion bonds using bi-layer interfacial notched specimens in a four point bend fixture. The test results confirm the trade-off between annealing time and temperature to achieve similar bond strengths. The experimental results agree with theory and published data. Subsequent experiments should further investigate the effect of different annealing time, surface preparation and contacting atmosphere on bond strength. The technique could also be applied to test bond strength between dissimilar materials, for instance silicon and silicon carbide.
机译:麻省理工学院的燃气轮机实验室(GTL)和微系统技术实验室(MTL)于1995年开始共同开发一系列基于MEMS的涡轮发动机和涡轮发电机。本文主要研究两个独立的研究主题: ,使用混合硅/碳化硅结构来扩展第一代微引擎的运行范围,其次,是一种测试技术,以测量硅与硅融合键的韧性。由于高温下Si的强度相对较低,因此全硅演示设备尚未达到设计规范。在涡轮机盘和涡轮机叶片中引入有限量的SiC可使旋转结构的温度容限提高150-200K。与全硅基线设计相比,具有30%SiC芯的涡轮机盘和具有300pim高SiC芯的空心涡轮机叶片在微引擎性能方面有显着改善:压缩机压力比提高30%,轴功率提高四倍输出。但是,需要采取更积极的冷却方案或重新设计旋转阀芯,以实现进一步的改进。尽管必须进一步开发一些关键的SiC工艺步骤,但混合结构的制造与当前的微引擎工艺流程兼容。已经开发了一种测试技术,用于在四点弯曲夹具中使用双层界面缺口样品来测量Si-Si熔合键的韧性。测试结果证实了退火时间和温度之间的权衡,以获得相似的粘结强度。实验结果与理论和公开数据相吻合。随后的实验应进一步研究不同退火时间,表面处理和接触气氛对粘结强度的影响。该技术还可用于测试不同材料(例如硅和碳化硅)之间的粘结强度。

著录项

  • 作者

    Miller Bruno 1974-;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号