首页> 外文OA文献 >Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation
【2h】

Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation

机译:卷积网络可以学习为图像分割生成亲和图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many image segmentation algorithms first generate an affinity graph and then partition it. We present a machine learning approach to computing an affinity graph using a convolutional network (CN) trained using ground truth provided by human experts. The CN affinity graph can be paired with any standard partitioning algorithm and improves segmentation accuracy significantly compared to standard hand-designed affinity functions.We apply our algorithm to the challenging 3D segmentation problem of reconstructing neuronal processes from volumetric electron microscopy (EM) and show that we are able to learn a good affinity graph directly from the raw EM images. Further, we show that our affinity graph improves the segmentation accuracy of both simple and sophisticated graph partitioning algorithms.In contrast to previous work, we do not rely on prior knowledge in the form of hand-designed image features or image preprocessing. Thus, we expect our algorithm to generalize effectively to arbitrary image types.
机译:许多图像分割算法首先生成亲和图,然后对其进行分区。我们提出了一种使用卷积网络(CN)来计算亲和图的机器学习方法,该卷积网络是使用人类专家提供的地面实况进行训练的。与亲手设计的标准亲和函数相比,CN亲和图可以与任何标准分区算法配对,并显着提高了分割精度。我们能够直接从原始EM图像中学习良好的亲和度图。进一步地,我们证明了我们的亲和图提高了简单和复杂的图划分算法的分割精度,与之前的工作相比,我们不依赖于手工设计的图像特征或图像预处理形式的先验知识。因此,我们希望我们的算法能够有效地推广到任意图像类型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号