Prochlorococcus, a unicellular cyanobacterium, is the most abundant phytoplankton in the oligotrophic, oceanic gyres where major plant nutrients such as nitrogen (N) and phosphorus (P) are at nanomolar concentrations. Nitrogen availability controls primary productivity in many of these regions. The cellular mechanisms that Prochlorococcus uses to acquire and metabolize nitrogen are thus central to its ecology. One of the goals of this thesis was to investigate how two Prochlorococcus strains responded on a physiological and genetic level to changes in ambient nitrogen. We characterized the N-starvation response of Prochlorococcus MED4 and MIT9313 by quantifying changes in global mRNA expression, chlorophyll fluorescence, and Fv/Fm along a time-series of increasing N starvation. In addition to efficiently scavenging ambient nitrogen, Prochlorococcus strains are hypothesized to niche-partition the water column by utilizing different N sources. We thus studied the global mRNA expression profiles of these two Prochlorococcus strains on different N sources. The recent sequencing of a number of Prochlorococcus genomes has revealed that nearly half of Prochlorococcus genes are of unknown function.
展开▼