首页> 外文OA文献 >Exploiting Deep Neural Networks and Head Movements for Robust Binaural Localization of Multiple Sources in Reverberant Environments
【2h】

Exploiting Deep Neural Networks and Head Movements for Robust Binaural Localization of Multiple Sources in Reverberant Environments

机译:利用深度神经网络和头部运动实现混响环境中多源鲁棒双耳定位

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a novel machine-hearing system that exploits deep neural networks (DNNs) and head movements for robust binaural localization of multiple sources in reverberant environments. DNNs are used to learn the relationship between the source azimuth and binaural cues, consisting of the complete cross-correlation function (CCF) and interaural level differences (ILDs). In contrast to many previous binaural hearing systems, the proposed approach is not restricted to localization of sound sources in the frontal hemifield. Due to the similarity of binaural cues in the frontal and rear hemifields, front–back confusions often occur. To address this, a head movement strategy is incorporated in the localization model to help reduce the front–back errors. The proposed DNN system is compared to a Gaussian-mixture-model-based system that employs interaural time differences (ITDs) and ILDs as localization features. Our experiments show that the DNN is able to exploit information in the CCF that is not available in the ITD cue, which together with head movements substantially improves localization accuracies under challenging acoustic scenarios, in which multiple talkers and room reverberation are present.
机译:本文提出了一种新颖的机器听觉系统,该系统利用深度神经网络(DNN)和头部运动来在混响环境中对多个声源进行稳健的双耳定位。 DNN用于了解源方位角和双耳线索之间的关系,其中包括完整的互相关函数(CCF)和耳间电平差(ILD)。与许多以前的双耳听觉系统相反,所提出的方法不限于声波在额叶半场中的定位。由于在前半球和后半球中双耳线索的相似性,经常会发生前后混淆。为了解决这个问题,在局部化模型中采用了头部移动策略,以帮助减少前后误差。将拟议的DNN系统与基于高斯混合模型的系统进行比较,该系统采用双耳时差(ITD)和ILD作为定位特征。我们的实验表明,DNN能够利用ITD提示中没有的CCF中的信息,在具有挑战性的声学场景中(存在多个讲话者和房间混响的情况下),头部运动可以大大提高头部的定位精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号