首页> 外文OA文献 >High Performance with Prescriptive Optimization and Debugging
【2h】

High Performance with Prescriptive Optimization and Debugging

机译:具有规范优化和调试的高性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parallel programming is the dominant approach to achieve high performance in computing today. Correctly writing efficient and fast parallel programs is a big challenge mostly carried out by experts. We investigate optimization and debugging of parallel programs.We argue that automatic parallelization and automatic vectorization is attractive as it transparently optimizes programs. The thesis contributes an improved dependence analysis for explicitly parallel programs. These improvements lead to more loops being vectorized, on average we achieve a speedup of 1.46 over the existing dependence analysis and vectorizer in GCC. Automatic optimizations often fail for theoretical and practical reasons. When they fail we argue that a hybrid approach can be effective. Using compiler feedback, we propose to use the programmer’s intuition and insight to achieve high performance. Compiler feedback enlightens the programmer why a given optimization was not applied, and suggest how to change the source code to make it more amenable to optimizations. We show how this can yield significant speedups and achieve 2.4 faster execution on a real industrial use case. To aid in parallel debugging we propose the prescriptive debugging model, which is a user-guided model that allows the programmer to use his intuition to diagnose bugs in parallel programs. The model is scalable, yet capable enough, to be general-purpose. In our evaluation we demonstrate low run time overhead and logarithmic scalability. This enable the model to be used on extremely large parallel systems.
机译:并行编程是当今实现高性能的主要方法。正确编写高效,快速的并行程序是一项主要由专家执行的重大挑战。我们研究了并行程序的优化和调试。我们认为自动并行化和自动矢量化具有吸引力,因为它透明地优化了程序。本文为显式并行程序提供了一种改进的依赖性分析。这些改进导致更多的循环被矢量化,平均而言,与GCC中现有的依赖关系分析和矢量化程序相比,我们的速度提高了1.46。自动优化通常会因理论和实践原因而失败。当他们失败时,我们认为混合方法可能是有效的。我们建议利用编译器的反馈,利用程序员的直觉和洞察力来实现高性能。编译器反馈会启发程序员为什么不应用给定的优化,并建议如何更改源代码以使其更适合于优化。我们展示了如何在实际的工业用例上实现显着的加速并实现2.4更快的执行速度。为了帮助并行调试,我们提出了规定性调试模型,该模型是用户指导的模型,可让程序员使用自己的直觉来诊断并行程序中的错误。该模型具有可伸缩性,但足够通用。在我们的评估中,我们展示了较低的运行时开销和对数可伸缩性。这使得该模型可以在超大型并行系统上使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号