首页> 外文OA文献 >Techno-economic optimisation of three gas liquefaction processes for small-scale applications
【2h】

Techno-economic optimisation of three gas liquefaction processes for small-scale applications

机译:用于小规模应用的三种气体液化工艺的技术经济优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natural gas liquefaction systems are based on refrigeration cycles, which can be subdivided into: the cascade, mixed refrigerant and expansion-based processes. They differ by their design configurations, components and working fluids, and thus have various operating conditions and equipment inventory. The present work investigates three configurations (single-mixed refrigerant, single and dual reverse Brayton cycles) for small-scale applications, which are optimised and evaluated individually. The influences of the refrigerant properties and process technologies are analysed, and the most promising cycle setups are identified. The findings illustrate the resulting trade-offs between the system performance and investment costs, which differ significantly with the type of refrigeration cycle. Although these configurations are suitable for small-scale applications, mixed-refrigerant processes prove to be more efficient (1000-2000 kJ/kg) than expansion-based ones (2500-5000 kJ/kg) over larger ranges of operating conditions, at the expense of a greater system complexity and higher thermal conductance (250-500 kW/K against 80-160 kW/K). The results show that the use of different thermodynamic models leads to relative deviations of up to 1% for the power consumption and 20% for the network conductance. Particular caution should thus be exercised when extrapolating the results of process models to the design of actual gas liquefaction systems.
机译:天然气液化系统基于制冷循环,可细分为:级联,混合制冷剂和基于膨胀的过程。它们的设计配置,组件和工作流体不同,因此具有各种运行条件和设备清单。本工作研究了针对小型应用的三种配置(单混合制冷剂,单和双反向布雷顿循环),它们分别进行了优化和评估。分析了制冷剂性能和工艺技术的影响,并确定了最有希望的循环设置。这些发现说明了系统性能与投资成本之间的权衡,这与制冷循环的类型明显不同。尽管这些配置适用于小规模应用,但在较大的运行条件范围内,混合制冷工艺比基于膨胀的制冷工艺(2500-5000 kJ / kg)更有效(1000-2000 kJ / kg)。花费更大的系统复杂性和更高的热导率(250-500 kW / K对比80-160 kW / K)。结果表明,使用不同的热力学模型会导致功耗的相对偏差高达1%,网络电导的相对偏差高达20%。因此,在将过程模型的结果外推到实际气体液化系统的设计时,应格外小心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号