首页> 外文OA文献 >Simulation of bluff-body flows using iterative penalization in a multiresolution particle-mesh vortex method
【2h】

Simulation of bluff-body flows using iterative penalization in a multiresolution particle-mesh vortex method

机译:在多分辨率粒子 - 网格涡旋方法中使用迭代惩罚模拟钝体流动

摘要

The ability to predict aerodynamic forces, due to the interaction of a fluid flow with a solid body, is central in many fields of engineering and is necessary to identify error-prone structural designs. In bluff-body flows the aerodynamic forces oscillate due to vortex shedding and variations in the oncoming flow. This may lead to structural instability e.g. when the shedding frequency aligns with the natural frequency of the structure. Fluid structure interaction must especially be considered when designing long span bridges. A three dimensional vortex-in-cell method is applied for the direct numerical simulation of the flow past a bodies of arbitrary shape. Vortex methods use a simple formulation where only the trajectories of discrete vortex particles are simulated. TheLagrangian formulation eliminates the CFL type condition that Eulerian methodshave to satisfy. This allows vortex methods to take significantly larger time steps inconvection dominated flows with explicit time integration.As vorticity is a bounded quantity and the velocity field can be calculated for freespace-or periodic boundary conditions, these method allows for a minimized domainand hence minimize computational efforts.Pure particle-vortex methods have the disadvantage of being highly costly. Thecalculation of particle velocities in particle vortex methods has traditionally been doneby directly applying the Biot-Savart law yielding an N2-body problem. However thePoisson equation, that relates the vorticity- to the velocity field, can be solved effi-ciently using a mesh-based solver with local refinement in the boundary layer regions.We present a higher-order particle-mesh vortex method, where particle velocitiesare calculated by solving the Poisson equation on several uniform meshes using FastFourier Transforms. This we combine with an iterative penalization method, thatallows the simulation of external flows past arbitrary geometries in arbitrary motionssuch as bridge decks in forced heave and pitch motion
机译:由于流体与固体之间的相互作用,预测空气动力的能力在许多工程领域中至关重要,并且对于识别容易出错的结构设计是必不可少的。在钝体流中,空气动力由于涡旋脱落和迎面而来的流的变化而振荡。这可能会导致结构不稳定,例如当脱落频率与结构的固有频率一致时。设计大跨度桥梁时,必须特别考虑流体结构的相互作用。将三维单元涡旋方法用于流经任意形状的物体的直接数值模拟。涡旋方法使用一种简单的公式表示,其中仅模拟离散涡旋粒子的轨迹。拉格朗日公式消除了欧拉方法必须满足的CFL类型条件。这使得涡旋方法在显式时间积分的对流占主导地位的流中采用明显更大的时间步长。由于涡旋是有界量,并且可以针对自由空间或周期性边界条件计算速度场,因此这些方法可以使域最小化,从而减少了计算工作量纯粒子涡旋方法具有成本高的缺点。传统上,通过直接应用产生N2体问题的Biot-Savart定律,可以完成粒子涡旋方法中粒子速度的计算。然而,可以使用边界层区域中具有局部细化功能的基于网格的求解器有效地求解将涡度与速度场相关的泊松方程。通过使用FastFourier变换在多个均匀网格上求解泊松方程来计算。我们将其与迭代惩罚方法结合起来,该方法允许模拟任意运动中经过任意几何形状的外部流动,例如强制升沉和俯仰运动中的桥面

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号