首页> 外文OA文献 >Patched Green's function techniques for two-dimensional systems:Electronic behavior of bubbles and perforations in graphene
【2h】

Patched Green's function techniques for two-dimensional systems:Electronic behavior of bubbles and perforations in graphene

机译:patched Green的二维系统功能技术:石墨烯中气泡和穿孔的电子行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a numerically efficient technique to evaluate the Green's function for extended two-dimensional systems without relying on periodic boundary conditions. Different regions of interest, or “patches,” are connected using self-energy terms which encode the information of the extended parts of the system. The calculation scheme uses a combination of analytic expressions for the Green's function of infinite pristine systems and an adaptive recursive Green's function technique for the patches. The method allows for an efficient calculation of both local electronic and transport properties, as well as the inclusion of multiple probes in arbitrary geometries embedded in extended samples. We apply the patched Green's function method to evaluate the local densities of states and transmission properties of graphene systems with two kinds of deviations from the pristine structure: bubbles and perforations with characteristic dimensions of the order of 10-25 nm, i.e., including hundreds of thousands of atoms. The strain field induced by a bubble is treated beyond an effective Dirac model, and we demonstrate the existence of both Friedel-type oscillations arising from the edges of the bubble, as well as pseudo-Landau levels related to the pseudomagnetic field induced by the nonuniform strain. Second, we compute the transport properties of a large perforation with atomic positions extracted from a transmission electron microscope image and show that current vortices may form near the zigzag segments of the perforation.
机译:我们提出了一种数值有效的技术,可以在不依赖周期性边界条件的情况下评估扩展二维系统的格林函数。使用自能量项连接不同的兴趣区域或“补丁”,这些自能量项对系统扩展部分的信息进行编码。该计算方案结合了无限原始系统的格林函数的解析表达式和补丁的自适应递归格林函数技术。该方法可以有效地计算局部电子和传输性质,以及在扩展样品中嵌入的任意几何形状中包含多个探针。我们应用修补的格林函数方法来评估石墨烯系统的局部密度和透射性质,该性质与原始结构有两种偏差:气泡和特征尺寸为10-25 nm的穿孔,即包括数百个数千个原子。气泡引起的应变场的处理超出了有效的Dirac模型,并且我们证明了气泡边缘引起的Friedel型振荡以及与非均匀磁场引起的伪磁场有关的伪Landau水平的存在。应变。其次,我们使用从透射电子显微镜图像中提取的原子位置来计算大孔眼的传输特性,并表明当前的涡流可能会在孔眼的锯齿形段附近形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号