首页> 外文OA文献 >On the Integration of Wide Band-gap Semiconductors in Single Phase Boost PFC Converters
【2h】

On the Integration of Wide Band-gap Semiconductors in Single Phase Boost PFC Converters

机译:单相Boost pFC变换器中宽带隙半导体的集成

摘要

Power semiconductor technology has dominated the evolution of switched mode power supplies (SMPS). Advances in silicon (Si) technology, as the introduction of metal oxide field effect transistor (MOSFET), isolated gate bipolar transistors (IGBT), superjunction vertical structures and Schottky diodes, or the introduction of silicon carbide (SiC) diodes, provided large steps in miniaturization and efficiency improvement of switched mode power converters. Gallium nitride (GaN) and SiC semiconductor devices have already been around for some years. The first one proliferated due to the necessity of high frequency operation in optoelectronics applications. On the other hand, Schottky SiC power diodes were introduced in 2001 as an alternative to eliminate reverse recovery issues in Si rectifiers. Wide band-gap semiconductors offer an increased electrical field strength and electron mobility compared to Si semiconductors. Moreover, both semiconductor materials are particularly interesting for high temperature operation. These characteristics makes integration of SiC and GaN devices as the next logical step to further increase efficiency and power density in SMPS. This work is part of the PhD project “Single phase PFC converter using wide band-gap devices” and focuses on attainable advantages by introducing wide band-gap semiconductors, and more particularly GaN devices in power factor correction circuits (PFC). First, an overview of current state-of-the-art semiconductor technology in the 600/650 V range, and recent developments on the integration of GaN devices in SMPS are provided. The second part of the thesis provides an insight on semiconductor characterization and compares state-of-the-art Si technology to current available GaN switches. After this overview, a comparison between continuous (CCM) and boundary conduction modes (BCM) in PFC applications is provided based on the semiconductor characterization data. The comparison takes into consideration the electro magnetic interference (EMI) filter size and the converter input inductor volume, as a necessary part for evaluating the converter efficiency and power density. The last part of the thesis provides technical aspects on the controllability of GaN switches in high switching frequency implementations. Moreover, a zero voltage switching (ZVS) control scheme for BCM implementations, capable of operating in the MHz switching frequency range is presented.
机译:功率半导体技术已经主导了开关电源(SMPS)的发展。硅(Si)技术的进步,例如金属氧化物场效应晶体管(MOSFET),隔离栅双极型晶体管(IGBT),超结垂直结构和肖特基二极管的引入,或碳化硅(SiC)二极管的引入,提供了很大的发展空间在开关电源转换器的小型化和效率改善中的应用。氮化镓(GaN)和SiC半导体器件已经存在了很多年。由于光电子应用中需要高频操作,第一个激增了。另一方面,肖特基碳化硅功率二极管于2001年推出,作为消除硅整流器中反向恢复问题的替代方法。与Si半导体相比,宽带隙半导体提供了更高的电场强度和电子迁移率。而且,两种半导体材料对于高温操作都是特别令人感兴趣的。这些特性使SiC和GaN器件集成成为下一步逻辑步骤,以进一步提高SMPS的效率和功率密度。这项工作是PhD项目“使用宽带隙器件的单相PFC转换器”的一部分,并且通过引入宽带隙半导体,尤其是功率因数校正电路(PFC)中的GaN器件,着重于获得的优势。首先,概述了当前600/650 V范围内的最新半导体技术,以及GaN器件在SMPS中集成的最新进展。论文的第二部分提供了有关半导体表征的见解,并将最先进的Si技术与当前可用的GaN开关进行了比较。在此概述之后,将基于半导体特性数据提供PFC应用中的连续(CCM)模式和边界传导模式(BCM)之间的比较。该比较考虑了电磁干扰(EMI)滤波器的尺寸和转换器输入电感器的体积,这是评估转换器效率和功率密度的必要部分。本文的最后一部分提供了有关高开关频率实现中GaN开关可控性的技术方面的信息。此外,提出了一种能够在MHz开关频率范围内工作的BCM实现的零电压开关(ZVS)控制方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号