首页> 外文OA文献 >Generating Geospatially Realistic Driving Patterns Derived From Clustering Analysis Of Real EV Driving Data
【2h】

Generating Geospatially Realistic Driving Patterns Derived From Clustering Analysis Of Real EV Driving Data

机译:从真实EV驾驶数据的聚类分析中生成地理空间逼真的驾驶模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to provide a vehicle fleet that realistically represents the predicted Electric Vehicle (EV) penetration for the future, a model is required that mimics people driving behaviour rather than simply playing back collected data. When the focus is broadened from on a traditional user-centric smart charging approach to be more grid-centric, it suddenly becomes important to know not just when- and how much the vehicles charge, but also where in the grid they plug in. Since one of the main goals of EV-grid studies is to find the saturation point, it is equally important that the simulation scales, which calls for a statistically correct, yet flexible model. This paper describes a method for modelling EV, based on non-categorized data, which takes into account the plug in locations of the vehicles. By using clustering analysis to extrapolate and classify the primary locations where the vehicles park, the model can be transferred geographically using known locations of the same classification.
机译:为了提供现实地代表未来电动汽车(EV)预计普及率的车队,需要一种模型来模仿人们的驾驶行为,而不是简单地回放收集的数据。当人们的注意力从传统的以用户为中心的智能充电方法扩展到以电网为中心时,突然变得不仅重要的是,不仅要了解车辆的充电时间和充电量,还要知道车辆插入电网的位置。 EV电网研究的主要目标之一是找到饱和点,仿真比例尺同样重要,这需要统计上正确但灵活的模型。本文介绍了一种基于非分类数据的电动汽车建模方法,该方法考虑了车辆的插入位置。通过使用聚类分析来推断和分类车辆停放的主要位置,可以使用相同分类的已知位置在地理上转移模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号