首页> 外文OA文献 >Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation
【2h】

Topology optimization of acoustic-structure interaction problems using a mixed finite element formulation

机译:利用混合有限元公式优化声 - 结构相互作用问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper presents a gradient-based topology optimization formulation that allows to solve acoustic-structure (vibro-acoustic) interaction problems without explicit boundary interface representation. In acoustic-structure interaction problems, the pressure and displacement fields are governed by Helmholtz equation and the elasticity equation, respectively. Normally, the two separate fields are coupled by surface-coupling integrals, however, such a formulation does not allow for free material re-distribution in connection with topology optimization schemes since the boundaries are not explicitly given during the optimization process. In this paper we circumvent the explicit boundary representation by using a mixed finite element formulation with displacements and pressure as primary variables (a u/p-formulation). The Helmholtz equation is obtained as a special case of the mixed formulation for the elastic shear modulus equating to zero. Hence, by spatial variation of the mass density, shear and bulk moduli we are able to solve the coupled problem by the mixed formulation. Using this modelling approach, the topology optimization procedure is simply implemented as a standard density approach. Several two-dimensional acoustic-structure problems are optimized in order to verify the proposed method.
机译:本文提出了一种基于梯度的拓扑优化公式,该公式可解决声学结构(振动-声学)相互作用问题,而无需明确的边界界面表示。在声学-结构相互作用问题中,压力场和位移场分别由Helmholtz方程和弹性方程控制。通常,两个单独的场通过表面耦合积分耦合,但是,由于在优化过程中没有明确给出边界,因此这种设计不允许结合拓扑优化方案自由地重新分配材料。在本文中,我们通过使用以位移和压力为主要变量(u / p公式)的混合有限元公式来规避显式边界表示。作为弹性剪切模量等于零的混合配方的特例,获得了亥姆霍兹方程。因此,通过质量密度,剪切模量和体积模量的空间变化,我们能够通过混合配方解决耦合问题。使用这种建模方法,拓扑优化过程可以简单地实现为标准密度方法。为了验证所提出的方法,优化了几个二维声学结构问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号