首页> 外文OA文献 >Single-Channel Speech Separation using Sparse Non-Negative Matrix Factorization
【2h】

Single-Channel Speech Separation using Sparse Non-Negative Matrix Factorization

机译:利用稀疏非负矩阵分解的单通道语音分离

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We apply machine learning techniques to the problem of separating multiple speech sources from a single microphone recording. The method of choice is a sparse non-negative matrix factorization algorithm, which in an unsupervised manner can learn sparse representations of the data. This is applied to the learning of personalized dictionaries from a speech corpus, which in turn are used to separate the audio stream into its components. We show that computational savings can be achieved by segmenting the training data on a phoneme level. To split the data, a conventional speech recognizer is used. The performance of the unsupervised and supervised adaptation schemes result in significant improvements in terms of the target-to-masker ratio.
机译:我们将机器学习技术应用于从单个麦克风录音中分离多个语音源的问题。选择的方法是一种稀疏的非负矩阵分解算法,该算法可以以无监督的方式学习数据的稀疏表示。这适用于从语音语料库中学习个性化词典,后者又用于将音频流分离为其组成部分。我们表明,通过在音素级别上分割训练数据可以节省计算量。为了分割数据,使用常规的语音识别器。无监督和有监督的自适应方案的性能导致目标与掩蔽率的显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号