首页> 外文OA文献 >Pre- and post-processing filters for improvement of blood velocity estimation
【2h】

Pre- and post-processing filters for improvement of blood velocity estimation

机译:用于改善血流速度估计的预处理和后处理滤波器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The standard deviation on the blood velocity estimates are influenced by measurement noise, velocity spread, and signal alteration introduced by de-noising and clutter filters. A noisy and non-smooth appearance of the velocity distribution is obtained, which is not consistent with the actual velocity in the vessels. Post-processing is beneficial to obtain an image that minimizes the variation, and present the important information to the clinicians. Applying the theory of fluid mechanics introduces restrictions on the variations possible in a flow field. Neighboring estimates in time and space should be highly correlated, since transitions should occur smoothly. This idea is the basis of the algorithm developed in this study. From Bayesian image processing theory an a posteriori probability distribution for the velocity field is computed based on constraints on smoothness. An estimate of the velocity in a given point is computed by maximization of the probability, given prior knowledge of the original estimate in that position, and the estimates in the neighboring positions in time and space. The method has been tested on simulated 2D RF-data resembling signals from the carotid artery with different signal-to-noise ratios (SNR). The exact extent of the vessel and the true velocities are thereby known. Velocity estimates were obtained by employing Kasai's autocorrelator on the data. The post-processing filter was used on the computed 2D velocity map. An improvement of the RMS error in the range of 15-53% was observed. For low SNRs the highest improvement was obtained. Visual inspection of the images show a high qualitative improvement. A more smooth profile has been obtained, which more closely resembles the true smooth profile. The same conclusion can be drawn after application of the filter to in-vivo data acquired with a dedicated sampling system.
机译:血流速度估计值的标准偏差受测量噪声,速度扩展以及由降噪和杂波滤波器引入的信号变化的影响。获得了速度分布的嘈杂且不平滑的外观,这与容器中的实际速度不一致。后处理有利于获得使变化最小化的图像,并将重要信息呈现给临床医生。应用流体力学理论引入了对流场中可能变化的限制。相邻的时间和空间估算值应高度相关,因为过渡应平稳进行。这个想法是本研究开发的算法的基础。根据贝叶斯图像处理理论,基于对光滑度的约束,可以计算出速度场的后验概率分布。给定点的速度估计值是通过概率的最大化,已知该位置的原始估计值以及时间和空间中相邻位置的估计值来计算的。该方法已在模拟的二维RF数据上进行了测试,该数据类似于来自颈动脉的具有不同信噪比(SNR)的信号。从而知道了船只的确切范围和真实速度。通过使用Kasai的自相关器对数据进行速度估算。后处理滤波器用于计算的2D速度图。观察到RMS误差在15-53%的范围内有所改善。对于低SNR,可获得最高的改进。视觉检查图像显示出高质量的改进。获得了更平滑的轮廓,其与真实的平滑轮廓更相似。将过滤器应用于通过专用采样系统获取的体内数据后,可以得出相同的结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号