首页> 外文OA文献 >Detection and processing of phase modulated optical signals at 40 Gbit/s and beyond
【2h】

Detection and processing of phase modulated optical signals at 40 Gbit/s and beyond

机译:检测和处理40 Gbit / s及以上的相位调制光信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis addresses demodulation in direct detection systems and signal processing of high speed phase modulated signals in future all-optical wavelength division multiplexing (WDM) communication systems where differential phase shift keying (DPSK) or differential quadrature phase shift keying (DQPSK) are used to transport information. All-optical network functionalities -such as optical labeling, wavelength conversion and signal regeneration- are experimentally investigated. Direct detection of phase modulated signals requires phase-to-intensity modulation conversion in a demodulator at the receiver side. This is typically implemented in a one bit delay Mach-Zehnder interferometer (MZI). Two alternative ways of performing phase-to-intensity modulation conversion are presented. Successful demodulation of DPSK signals up to 40 Gbit/s is demonstrated using the proposed two devices. Optical labeling has been proposed as an efficient way to implement packet routing and forwarding functionalities in future IP-over-WDM networks. An in-band subcarrier multiplexing (SCM) labeled signal using 40 Gbit/s DSPK payload and 25 Mbit/s non return-to-zero(NRZ) SCM label, is successfully transmitted over 80 km post-compensated non-zero dispersion shifted fiber (NZDSF) span. Using orthogonal labeling, an amplitude shift keying (ASK)/DPSK labeled signal using 40 Gbit/s return-to-zero (RZ) payload and 2.5 Gbit/s DPSK label, is generated. WDM transmission and label swapping are demonstrated for such a signal. In future all-optical WDM networks, wavelength conversion is an essential functionality to provide wavelength flexibility and avoid wavelength blocking. Using a 50 m long highly nonlinear photonic crystal fiber (HNL-PCF), with a simple four-wave mixing (FWM) scheme, wavelength conversion of single channel and multi-channel high-speed DPSK signals is presented. Wavelength conversion of an 80 Gbit/s RZ-DPSK-ASK signal generated by combining different modulation formats is also reported. Amplitude distortion accumulated over transmission spans will eventually be converted into nonlinear phase noise, and consequently degrade the performance of systems making use of RZ-DPSK format. All-optical signal regeneration avoiding O-E-O conversion is desired to improve signal quality in ultra long-haul transmission systems. Proof-of-principle numerical simulation results are provided, that suggest the amplitude regeneration capability based on FWM in a highly nonlinear fiber (HNLF). The first reported experimental demonstration of amplitude equalization of 40 Gbit/s RZ-DPSK signals using a 500 m long HNLF is presented. Using four possible phase levels to carry the information, DQPSK allows generation of high-speed optical signals at bit rate that is twice the operating speed of the electronics involved. Generation of an 80 Gbit/s DQPSK signal is demonstrated using 40 Gbit/s equipment. The first demonstration of wavelength conversion of such a high-speed signal is implemented using FWM in a 1 km long HNLF. No indication of error floor is observed. Using polarization multiplexing and combination of DQPSK with ASK and RZ pulse carving at a symbol rate of 40 Gbaud, a 240 Gbit/s RZ-DQPSK-ASK signal is generated and transmitted over 50 km fiber span with no power penalty. In summary, we show that direct detection and all-optical signal processing -including optical labeling, wavelength conversion and signal regeneration- that already have been studied intensively for signals using conventional on-off keying (OOK) format, can also be successfully implemented for high-speed phase modulated signals. The results obtained in this work are believed to enhance the feasibility of phase modulation in future ultra-high speed spectrally efficient optical communication systems.
机译:本文讨论了未来的全光波分复用(WDM)通信系统中的直接检测系统中的解调和高速相位调制信号的信号处理,在这些系统中,差分相移键控(DPSK)或差分正交相移键控(DQPSK)用于运输信息。实验研究了全光网络功能,例如光标记,波长转换和信号再生。直接检测相位调制信号需要在接收机侧的解调器中进行相位到强度的调制转换。这通常在一位延迟的马赫曾德尔干涉仪(MZI)中实现。提出了两种执行相位到强度调制转换的方法。使用建议的两个设备演示了成功解调高达40 Gbit / s的DPSK信号。已经提出光学标记作为在未来的IP-over-WDM网络中实现分组路由和转发功能的有效方法。使用40 Gbit / s DSPK有效负载和25 Mbit / s非归零(NRZ)SCM标签的带内子载波多路复用(SCM)标记信号已成功在80 km后补偿非零色散位移光纤上传输(NZDSF)跨度。使用正交标记,使用40 Gbit / s归零(RZ)净荷和2.5 Gbit / s DPSK标记生成幅度键控(ASK)/ DPSK标记信号。演示了这种信号的WDM传输和标签交换。在未来的全光WDM网络中,波长转换是提供波长灵活性和避免波长阻塞的基本功能。使用50 m长的高度非线性光子晶体光纤(HNL-PCF),并采用简单的四波混频(FWM)方案,提出了单通道和多通道高速DPSK信号的波长转换。还报道了通过组合不同的调制格式而产生的80 Gbit / s RZ-DPSK-ASK信号的波长转换。传输跨度上累积的幅度失真最终将转换为非线性相位噪声,因此会降低使用RZ-DPSK格式的系统的性能。为了避免超长距离传输系统中的信号质量,需要避免O-E-O转换的全光信号再生。提供了原理验证的数值模拟结果,表明在高度非线性光纤(HNLF)中基于FWM的振幅再生能力。首次报道了使用500 m长的HNLF对40 Gbit / s RZ-DPSK信号进行幅度均衡的实验演示。 DQPSK使用四个可能的相位级别来承载信息,从而可以产生比特率的高速光信号,该比特率是相关电子设备的工作速度的两倍。使用40 Gbit / s设备演示了如何生成80 Gbit / s DQPSK信号。这种高速信号的波长转换的第一个演示是在1公里长的HNLF中使用FWM实现的。没有观察到错误底限的指示。通过以40 Gbaud的符号速率对AQ和RZ脉冲雕刻进行极化复用和组合,并产生240 Gbit / s RZ-DQPSK-ASK信号并在50 km的光纤跨度上传输,而不会造成功率损失。总而言之,我们表明直接检测和全光信号处理-包括光学标记,波长转换和信号再生-已经使用常规的开关键控(OOK)格式对信号进行了深入研究,从而可以成功实现以下目的:高速相位调制信号。相信在这项工作中获得的结果将增强相位调制在未来超高速频谱高效光通信系统中的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号