首页> 外文OA文献 >Complementary techniques for solid oxide electrolysis cell characterisation at the micro- and nano-scale
【2h】

Complementary techniques for solid oxide electrolysis cell characterisation at the micro- and nano-scale

机译:微米级和纳米级固体氧化物电解电池表征的互补技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-temperature steam electrolysis by solid oxide electrolysis cells (SOEC) is a method with great potential for transforming clean and renewable energy from non-fossil sources to synthetic fuels such as hydrogen, methane or dimethyl ether, which have been identified as promising alternative energy carriers. With the same technology, fuel gas can be used in a very efficient way to reconvert chemically stored energy into electrical energy, since SOECs also work in the reverse mode, operating as solid oxide fuel cells (SOFC). As solid oxide cells (SOC) perform at high-temperatures (700–900 °C), material degradation and evaporation can occur, e.g., from the cell-sealing material, leading to poisoning effects and aging mechanisms that decrease the cell efficiency and long-term durability. To investigate such cell degradation processes, thorough examination of SOCs often requires a chemical and structural characterisation at a microscopic and nanoscopic level. The combination of different microscopic techniques such as conventional scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and the focused ion beam (FIB) preparation technique for transmission electron microscopy (TEM) allows for post-mortem analysis at a multi-scale level. These complementary techniques can be used to characterise structural and chemical changes over a large and representative sample area (micro-scale) as well as at the nano-scale level for selected sample details. This article presents a methodical approach for the structural and chemical characterisation of changes in aged cathode-supported electrolysis cells produced at Risø DTU, Denmark. Additionally, we present results from the characterisation of impurities at the electrolyte/hydrogen interface caused by evaporation of sealing material.
机译:固体氧化物电解池(SOEC)进行的高温蒸汽电解是一种将清洁和可再生能源从非化石能源转化为合成燃料(例如氢,甲烷或二甲醚)的巨大潜力的方法,氢已被证明是有前途的替代能源运营商。使用相同的技术,由于SOEC也以相反的模式工作,可以用作固体氧化物燃料电池(SOFC),因此可以非常有效地使用燃料气体将化学存储的能量转换为电能。当固态氧化物电池(SOC)在高温(700–900°C)下工作时,材料降解和蒸发可能会发生,例如,来自电池密封材料的分解和蒸发,从而导致中毒效应和老化机制,从而降低电池效率并延长使用寿命长期耐久性。为了研究此类细胞降解过程,对SOC进行彻底检查通常需要在微观和纳米水平上进行化学和结构表征。常规扫描电子显微镜(SEM),电子探针显微分析(EPMA)和聚焦离子束(FIB)透射电子显微镜(TEM)制备技术等不同显微技术的结合,可进行多尺度的事后分析水平。这些互补技术可用于表征大型和代表性样品区域(微米级)以及纳米级水平上所选样品细节的结构和化学变化。本文提出了一种方法学的方法,用于对丹麦RisøDTU生产的老化的阴极支撑电解池的变化进行结构和化学表征。另外,我们提出了由于密封材料蒸发而在电解质/氢界面处的杂质的表征结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号