首页> 外文OA文献 >Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures
【2h】

Lippmann-Schwinger integral equation approach to the emission of radiation by sources located inside finite-sized dielectric structures

机译:Lippmann-schwinger积分方程方法通过位于有限尺寸介电结构内的光源发射辐射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A full-vectorial integral equation method is presented for calculating near fields and far fields generated by a given distribution of sources located inside finite-sized dielectric structures. Special attention is given to the treatment of the singularity of the dipole source field. A method is presented for removing the dipole source field singularity from the integral equations to be solved. It is also shown how the numerical task can be reduced in the case of structures with cylindrical symmetry. The methods are applied to calculate the near fields, far fields, and the emission rate of light from a dipole source located in the center of a cylindrically symmetric dielectric disk. The emission for certain disk diameters, where a resonance condition is fulfilled, is enhanced by 13 times as compared to the emission from the same dipole source located in free space. The methods have prospective uses for analyzing the emission of light by sources in some antennas and optical components such as vertical cavity surface emitting lasers, microdisk lasers, and light emitting diodes. The methods also have prospective uses in quantum electrodynamics for studies of spontaneous emission from, e.g., an excited atom located inside a dieletric structure.
机译:提出了一种全矢量积分方程方法,用于计算由有限尺寸介电结构内部的给定源分布产生的近场和远场。特别注意偶极子源场的奇异性的处理。提出了一种从积分方程中消除偶极子源场奇异性的方法。还显示了在具有圆柱对称结构的情况下如何减少数值任务。该方法用于计算近距离场,远距离场以及位于圆柱对称介质盘中心的偶极子源的光发射率。与来自自由空间中相同偶极子源的发射相比,满足谐振条件的某些圆盘直径的发射增加了13倍。该方法在分析某些天线和光学组件(例如垂直腔表面发射激光器,微盘激光器和发光二极管)中的光源发出的光方面具有前瞻性用途。该方法在量子电动力学中还具有前瞻性的用途,用于研究自例如位于二烯结构内部的受激发原子的自发发射。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号