首页> 外文OA文献 >Design of Biomedical and Biofunctional Polymers by Use of Living/Controlled Polymerizations and 'Click' Chemistry
【2h】

Design of Biomedical and Biofunctional Polymers by Use of Living/Controlled Polymerizations and 'Click' Chemistry

机译:利用活性/可控聚合和“点击”化学设计生物医学和生物功能聚合物

摘要

The lecture will address recent research activities aiming at developing novel biomacromolecular materials with unsurpassed properties by use of the proper synthetic tools where various “click” chemistry approaches play a key prominent role. Two entirely different themes will be elaborated with first application of orthogonal “clicking” employing both the copper catalyzed alkyne azide 1,3-cycloaddition (CuAAC) and thiol-ene “click” and lastly “electroclicking” onto a conducting polymer surface. In the first part the classical medical material workhorse, poly(-caprolactone) (PCL), has been employed as a viable scaffold for design of several novel materials with intriguing, potentially therapeutic and biological properties. Living ROP strategies have afforded telechelic PCLs that can be equipped with various functional groups including “clickable” moieties or turned into macromonomers applicable for ATRP resulting in multi-component materials. In the first approach gold nanoparticles are protected with a polymeric shell that may combine ablative therapy and site-specific drug delivery in bladder cancer therapy.1 This may be accomplished by tailoring the surface properties and the size of the gold clusters. The former may be addressed by devising polymeric ligands with desirable features and functional groups. Thus the preparation of the PCL-b-PAA corona will be outlined. The second effort is the ligation of biologically active moieties to the termini of the hydrophobic PCL chain to afford the amphiphilic linear-dendritic macromolecule that comprises rod-like, coil-like, and dendritic fragments. The facile route to linear-dendritic cholesteryl-b-PCL-b-(L-lysine)G2 by azide-alkyne and thiol-ene “click” reactions will be elucidated.2 Here the driving motivation was to contrive a robust, facile, and effective synthetic strategy. Thirdly, the preparation of PCL-based miktoarm core-crosslinked amphiphilic star copolymers with hydrophobic interior, charged hydrophilic surface, and targeting motifs are elaborated.3 Such nanoscopic core-shell type architectures are envisioned to be excellent candidates as drug delivery devices owing to the enhanced stability in biological fluids. Moreover, they may permit site-specific delivery of their potential cargo due to the presence of biologically active moieties such as estradiol and L-lysine on the peripheries. In the second part novel azide containing, conductive (co)polymers based on poly(3,4-(1-azidomethylethylenedioxy-thiophene)) (PEDOT-N3) have been prepared.4 This enables introduction of new functionalities onto the conductive polymer. The CuAAC on the insoluble conductive polymer was optimized using a fluorescent alkyne. The original relative slow “click” reaction on the order of tens of hours in order to reach full conversion can be performed in only a few minutes by use of microwaves in a simple kitchen microwave oven.5 In a further development, it is demonstrated that the reaction can be localized spatially and selectively on either of a pair of interdigitated electrodes.6 The conducting polymer microelectrodes can electrochemically generate the catalyst required for their own functionalization by ”click” chemistry with high spatial resolution. Through control of the applied electrode potentials the electrodes are selectively functionalized in sequence as demonstrated by use of two alkyne-modified fluorophores. For this method we have introduced the term “electroclick”. In the most recent development complex one- or two-dimentional concentration gradients of alkynated molecules are produced locally on the PEDOT-N3 by stenciled “electroclick“ chemistry.7 A stencil on the counter electrode defines the shape and multiplicity of the gradient(s) on the conducting polymer substrate, whereas the specific reaction conditions control gradient steepness and the maximum concentration deposited. Biologically active ligands including cell binding peptides are patterned in gradients by this method without losing their biological function or the conductivity of the polymer.
机译:演讲将针对最近的研究活动,这些研究旨在通过使用适当的合成工具开发具有无与伦比特性的新型生物大分子材料,其中各种“点击”化学方法将发挥关键作用。首先使用正交“点击”,同时使用铜催化的炔叠氮化物1,3-环加成(CuAAC)和硫醇-烯“点击”,最后“电点击”到导电聚合物表面,来阐述两个完全不同的主题。在第一部分中,经典的医用材料主力产品聚(ε-己内酯)(PCL)已被用作可行的支架,用于设计具有新颖,潜在的治疗和生物学特性的几种新型材料。现行的ROP策略已提供了可装备各种功能组(包括“可点击的”部分)或变成适用于ATRP的大分子单体的远螯PCL,从而产生了多组分材料。在第一种方法中,用聚合物外壳保护金纳米颗粒,该外壳可以结合消融治疗和膀胱癌治疗中的部位特异性药物输送。1这可以通过调整金簇的表面性质和大小来实现。前者可以通过设计具有所需特征和官能团的聚合物配体来解决。因此,将概述PCL-b-PAA电晕的制备。第二项努力是将生物活性部分连接到疏水PCL链的末端,以提供包含杆状,线圈状和树突状片段的两亲性线性树突大分子。阐明了叠氮化物-炔烃和硫醇-烯“喀哒”反应生成线性树突状胆固醇-b-PCL-b-(L-赖氨酸)G2的简便途径。2这里的驱动动机是寻求一种稳健,简便,和有效的综合策略。第三,阐述了制备具有疏水性内部,带电荷的亲水性表面和靶向基序的基于PCL的miktoarm核交联的两亲星形共聚物。3鉴于这种纳米级的核壳型结构,由于其具有良好的化学稳定性,因此有望成为药物输送装置的最佳选择。增强了生物液体的稳定性。此外,由于周围存在生物活性部分,例如雌二醇和L-赖氨酸,它们可以允许其潜在货物的定点递送。在第二部分中,制备了一种新型的含叠氮化物的,基于聚(3,4-(1-叠氮基甲基乙二氧基噻吩))(PEDOT-N3)的导电(共)聚合物。4这样可以将新的功能引入导电聚合物中。使用荧光炔烃优化不溶性导电聚合物上的CuAAC。为了达到完全转化,最初的相对缓慢的“咔嗒”反应需要数十小时,这可以通过在简单的厨房微波炉中使用微波在几分钟内完成。5在进一步的开发中,证明了6导电聚合物微电极可以通过具有高空间分辨率的“点击”化学方法,电化学生成其自身功能化所需的催化剂。通过控制所施加的电极电势,如使用两个炔烃修饰的荧光团所证明的,依次对电极进行选择性功能化。对于这种方法,我们引入了术语“ electroclick”。在最近的发展中,通过模板化的“ electroclick”化学反应,在PEDOT-N3上局部生成了复杂的一维或二维浓度梯度的链化分子。7反电极上的模板定义了梯度的形状和多重性在特定的导电条件下,特定的反应条件控制梯度的陡度和沉积的最大浓度。通过这种方法,包括细胞结合肽在内的生物活性配体可以在不影响其生物学功能或聚合物电导率的情况下以梯度方式形成图案。

著录项

  • 作者

    Hvilsted Søren;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号