首页> 外文OA文献 >Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps
【2h】

Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps

机译:多项式步骤中的自稳定断开组件检测和生根最短路径树维护

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We deal with the problem of maintaining a shortest-path tree rooted at some process r in a network that may be disconnected after topological changes. The goal is then to maintain a shortest-path tree rooted at r in its connected component, V_r, and make all processes of other components detecting that r is not part of their connected component. We propose, in the composite atomicity model, a silent self-stabilizing algorithm for this problem working in semi-anonymous networks under the distributed unfair daemon (the most general daemon) without requiring any a priori knowledge about global parameters of the network. This is the first algorithm for this problem that is proven to achieve a polynomial stabilization time in steps. Namely, we exhibit a bound in O(W_{max} * n_{maxCC}^3 * n), where W_{max} is the maximum weight of an edge, n_{maxCC} is the maximum number of non-root processes in a connected component, and n is the number of processes. The stabilization time in rounds is at most 3n_{maxCC} + D, where D is the hop-diameter of V_r.
机译:我们处理的问题是,维护在网络中某个进程r上植根的最短路径树,该树可能在拓扑更改后断开连接。然后,目标是在其连接的组件V_r中维护以r为根的最短路径树,并使其他组件的所有进程都检测到r不是其连接的组件的一部分。我们建议在复合原子模型中,针对此问题在分布式不公平守护程序(最通用的守护程序)下在半匿名网络中工作的无问题自稳定算法,而无需任何有关网络全局参数的先验知识。这是针对该问题的第一种算法,已证明可逐步实现多项式稳定时间。即,我们在O(W_ {max} * n_ {maxCC} ^ 3 * n)中显示一个边界,其中W_ {max}是边的最大权重,n_ {maxCC}是非根进程的最大数目在连接的组件中,n是进程数。轮次的稳定时间最多为3n_ {maxCC} + D,其中D是V_r的跃点直径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号