首页> 外文OA文献 >Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio in Directed Graphs
【2h】

Improved Algorithms for Computing the Cycle of Minimum Cost-to-Time Ratio in Directed Graphs

机译:用于计算有向图中最小成本 - 时间比周期的改进算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the problem of finding the cycle of minimum cost-to-time ratio in a directed graph with n nodes and m edges. This problem has a long history in combinatorial optimization and has recently seen interesting applications in the context of quantitative verification. We focus on strongly polynomial algorithms to cover the use-case where the weights are relatively large compared to the size of the graph. Our main result is an algorithm with running time ~O(m^{3/4} n^{3/2}), which gives the first improvement over Megiddou27s ~O(n^3) algorithm [JACMu2783] for sparse graphs (We use the notation ~O(.) to hide factors that are polylogarithmic in n.) We further demonstrate how to obtain both an algorithm with running time n^3/2^{Omega(sqrt(log n)} on general graphs and an algorithm with running time ~O(n) on constant treewidth graphs. To obtain our main result, we develop a parallel algorithm for negative cycle detection and single-source shortest paths that might be of independent interest.
机译:我们研究了在有n个节点和m个边的有向图中找到最小成本时间比率的周期的问题。这个问题在组合优化中已有很长的历史,并且最近在定量验证的背景下出现了有趣的应用。我们专注于强多项式算法,以涵盖权重相对于图形大小而言较大的用例。我们的主要结果是运行时间为〜O(m ^ {3/4} n ^ {3/2})的算法,与Megiddo u27s〜O(n ^ 3)算法[JACM u2783]相比,这是第一个改进对于稀疏图(我们使用符号〜O(。)隐藏n中为多对数的因子。)我们进一步演示了如何同时获得运行时间为n ^ 3/2 ^ {Omega(sqrt(log n)}为了得到我们的主要结果,我们开发了一种用于负周期检测和可能具有独立利益的单源最短路径的并行算法,以获取主要结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号