首页> 外文OA文献 >Proof Complexity Lower Bounds from Algebraic Circuit Complexity
【2h】

Proof Complexity Lower Bounds from Algebraic Circuit Complexity

机译:证明复杂性从代数电路复杂性降低界限

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We give upper and lower bounds on the power of subsystems of the Ideal Proof System (IPS), the algebraic proof system recently proposed by Grochow and Pitassi, where the circuits comprising the proof come from various restricted algebraic circuit classes. This mimics an established research direction in the boolean setting for subsystems of Extended Frege proofs whose lines are circuits from restricted boolean circuit classes. Essentially all of the subsystems considered in this paper can simulate the well-studied Nullstellensatz proof system, and prior to this work there were no known lower bounds when measuring proof size by the algebraic complexity of the polynomials (except with respect to degree, or to sparsity).Our main contributions are two general methods of converting certain algebraic lower bounds into proof complexity ones. Both require stronger arithmetic lower bounds than common, which should hold not for a specific polynomial but for a whole family defined by it. These may be likened to some of the methods by which Boolean circuit lower bounds are turned into related proof-complexity ones, especially the "feasible interpolation" technique. We establish algebraic lower bounds of these forms for several explicit polynomials, against a variety of classes, and infer the relevant proof complexity bounds. These yield separations between IPS subsystems, which we complement by simulations to create a partial structure theory for IPS systems.Our first method is a functional lower bound, a notion of Grigoriev and Razborov, which is a function fu27 from n-bit strings to a field, such that any polynomial f agreeing with fu27 on the boolean cube requires large algebraic circuit complexity. We develop functional lower bounds for a variety of circuit classes (sparse polynomials, depth-3 powering formulas, read-once algebraic branching programs and multilinear formulas) where fu27(x) equals 1/p(x) for a constant-degree polynomial p depending on the relevant circuit class. We believe these lower bounds are of independent interest in algebraic complexity, and show that they also imply lower bounds for the size of the corresponding IPS refutations for proving that the relevant polynomial p is non-zero over the boolean cube. In particular, we show super-polynomial lower bounds for refuting variants of the subset-sum axioms in these IPS subsystems.Our second method is to give lower bounds for multiples, that is, to give explicit polynomials whose all (non-zero) multiples require large algebraic circuit complexity. By extending known techniques, we give lower bounds for multiples for various restricted circuit classes such sparse polynomials, sums of powers of low-degree polynomials, and roABPs. These results are of independent interest, as we argue that lower bounds for multiples is the correct notion for instantiating the algebraic hardness versus randomness paradigm of Kabanets and Impagliazzo. Further, we show how such lower bounds for multiples extend to lower bounds for refutations in the corresponding IPS subsystem.
机译:我们给出了理想证明系统(IPS)子系统的能力的上限和下限,理想证明系统是Grochow和Pitassi最近提出的代数证明系统,其中证明的电路来自各种受限的代数电路类。这模仿了扩展弗雷格证明子系统的布尔设置中的既定研究方向,扩展证明的子系统是来自受限布尔电路类别的电路。基本上,本文中考虑的所有子系统都可以模拟经过充分研究的Nullstellensatz证明系统,并且在进行此工作之前,通过多项式的代数复杂度来测量证明大小时,尚无已知的下界(关于度或我们的主要贡献是将某些代数下限转换为证明复杂度的两种通用方法。两者都需要比普通的更强的算术下限,这不应该适用于特定的多项式,而是适用于它所定义的整个族。这些可以比作将布尔电路下限转换为相关证明复杂度的某些方法,特别是“可行插值”技术。我们针对各种类别为几个显式多项式建立这些形式的代数下限,并推断相关的证明复杂性界限。 IPS子系统之间的这些收益分离,我们通过仿真来补充,以创建IPS系统的部分结构理论。我们的第一种方法是功能下界,即Grigoriev和Razborov的概念,这是n位字符串的函数f u27到一个字段,使得与布尔立方体上的f u27一致的任何多项式f都需要较大的代数电路复杂度。我们为各种电路类别(稀疏多项式,深度3幂公式,一次代数分支程序和多线性公式)开发函数下界,其中f u27(x)等于1 / p(x)恒定度多项式p取决于相关的电路类别。我们认为,这些下限在代数复杂度方面具有独立的意义,并且表明它们也暗示了相应的IPS反驳的大小的下限,以证明布尔多项式上相关多项式p非零。特别地,我们展示了超多项式下界,用于驳斥这些IPS子系统中的子和和公理的变体。第二种方法是给出倍数的下界,即给出所有(非零)倍数的显式多项式需要较大的代数电路复杂度。通过扩展已知技术,我们为各种受限电路类(例如稀疏多项式,低次多项式的幂和和roABP)给出了倍数的下界。这些结果具有独立的意义,因为我们认为倍数的下界是实例化Kabanets和Impagliazzo的代数硬度与随机性范式的正确概念。此外,我们展示了倍数的下限如何扩展到相应IPS子系统中反驳的下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号