首页> 外文OA文献 >Online Non-Preemptive Scheduling in a Resource Augmentation Model Based on Duality
【2h】

Online Non-Preemptive Scheduling in a Resource Augmentation Model Based on Duality

机译:基于对偶性的资源增值模型在线非抢占式调度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Resource augmentation is a well-established model for analyzing algorithms, particularly in the online setting. It has been successfully used for providing theoretical evidence for several heuristics in scheduling with good performance in practice. According to this model, the algorithm is applied to a more powerful environment than that of the adversary. Several types of resource augmentation for scheduling problems have been proposed up to now, including speed augmentation, machine augmentation and more recently rejection. In this paper, we present a framework that unifies the various types of resource augmentation. Moreover, it allows generalize the notion of resource augmentation for other types of resources. Our framework is based on mathematical programming and it consists of extending the domain of feasible solutions for the algorithm with respect to the domain of the adversary. This, in turn allows the natural concept of duality for mathematical programming to be used as a tool for the analysis of the algorithmu27s performance. As an illustration of the above ideas, we apply this framework and we propose a primal-dual algorithm for the online scheduling problem of minimizing the total weighted flow time of jobs on unrelated machines when the preemption of jobs is not allowed. This is a well representative problem for which no online algorithm with performance guarantee is known. Specifically, a strong lower bound of Omega(sqrt{n}) exists even for the offline unweighted version of the problem on a single machine. In this paper, we first show a strong negative result even when speed augmentation is used in the online setting. Then, using the generalized framework for resource augmentation and by combining speed augmentation and rejection, we present an (1+epsilon_s)-speed O(1/(epsilon_s epsilon_r))-competitive algorithm if we are allowed to reject jobs whose total weight is an epsilon_r-fraction of the weights of all jobs, for any epsilon_s > 0 and epsilon_r in (0,1). Furthermore, we extend the idea for analysis of the above problem and we propose an (1+epsilon_s)-speed epsilon_r-rejection O({k^{(k+3)/k}}/{epsilon_{r}^{1/k}*epsilon_{s}^{(k+2)/k}})-competitive algorithm for the more general objective of minimizing the weighted l_k-norm of the flow times of jobs.
机译:资源扩充是一个建立完善的模型,用于分析算法,尤其是在在线环境中。它已成功用于为调度中的几种启发式方法提供理论依据,并且在实践中表现良好。根据该模型,该算法被应用于比对手更强大的环境。到目前为止,已经提出了几种用于调度问题的资源扩充,包括速度扩充,机器扩充和最近的拒绝。在本文中,我们提出了一个统一各种资源扩充类型的框架。此外,它允许将资源扩充的概念推广到其他类型的资源。我们的框架基于数学编程,并且包括相对于对手的领域扩展算法可行解的范围。反过来,这允许将数学编程的对偶性自然概念用作分析算法性能的工具。为了说明上述观点,我们应用了此框架,并提出了一种用于在线调度问题的双对偶算法,该算法在不允许作业抢占的情况下最小化无关机器上作业的总加权流时间。这是一个很好的代表性问题,没有已知的具有性能保证的在线算法。特别是,即使对于单台计算机上的问题的离线未加权版本,Omega(sqrt {n})的下限也很强。在本文中,即使在在线设置中使用速度增强,我们也首先显示出强烈的负面结果。然后,使用广义框架进行资源扩充,并结合速度扩充和拒绝,如果允许我们拒绝总权重为的作业,则提出一种(1 + epsilon_s)-速度O(1 /(epsilon_s epsilon_r))-竞争算法。对于任何epsilon_s> 0和epsilon_r in(0,1)的情况,所有作业的权重的epsilon_r分数。此外,我们将思想扩展到上述问题的分析,并提出了(1 + epsilon_s)速度的epsilon_r拒绝O({k ^ {(k + 3)/ k}} / {epsilon_ {r} ^ {1 / k} * epsilon_ {s} ^ {(k + 2)/ k}})-竞争性算法,可实现更为通用的目标,即最大限度地减少作业流时间的加权l_k范数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号