首页> 外文OA文献 >Efficient Algorithms with Asymmetric Read and Write Costs
【2h】

Efficient Algorithms with Asymmetric Read and Write Costs

机译:具有非对称读写成本的高效算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In several emerging technologies for computer memory (main memory), the cost of reading is significantly cheaper than the cost of writing. Such asymmetry in memory costs poses a fundamentally different model from the RAM for algorithm design. In this paper we study lower and upper bounds for various problems under such asymmetric read and write costs. We consider both the case in which all but O(1) memory has asymmetric cost, and the case of a small cache of symmetric memory. We model both cases using the (M,omega)-ARAM, in which there is a small (symmetric) memory of size M and a large unbounded (asymmetric) memory, both random access, and where reading from the large memory has unit cost, but writing has cost omega 1.For FFT and sorting networks we show a lower bound cost of Omega(omega*n*log_{omega*M}(n)), which indicates that it is not possible to achieve asymptotic improvements with cheaper reads when omega is bounded by a polynomial in M. Moreover, there is an asymptotic gap (of min(omega,log(n)/log(omega*M)) between the cost of sorting networks and comparison sorting in the model. This contrasts with the RAM, and most other models, in which the asymptotic costs are the same. We also show a lower bound for computations on an n*n diamond DAG of Omega(omega*n^2/M) cost, which indicates no asymptotic improvement is achievable with fast reads. However, we show that for the minimum edit distance problem (and related problems), which would seem to be a diamond DAG, we can beat this lower bound with an algorithm with only O(omega*n^2/(M*min(omega^{1/3},M^{1/2}))) cost. To achieve this we make use of a "path sketch" technique that is forbidden in a strict DAG computation. Finally, we show several interesting upper bounds for shortest path problems, minimum spanning trees, and other problems. A common theme in many of the upper bounds is that they require redundant computation and a tradeoff between reads and writes.
机译:在计算机存储器(主存储器)的几种新兴技术中,读取成本比写入成本便宜得多。内存成本的这种不对称性与用于算法设计的RAM构成了根本不同的模型。在本文中,我们研究了在这种非对称读写成本下各种问题的上下限。我们既考虑O(1)内存之外的所有内存具有非对称开销的情况,也考虑了对称内存的小缓存的情况。我们使用(M,omega)-ARAM对这两种情况进行建模,其中有一个大小为M的小(对称)内存和一个大的无界(非对称)内存,都是随机访问的,从大内存中读取数据具有单位成本,但写作要花费omega 1.对于FFT和排序网络,我们显示出Omega(omega * n * log_ {omega * M}(n))的下界成本,这表明不可能实现渐近改进当Omega受M中的多项式约束时,读取的数据更便宜。此外,模型中的排序网络成本和比较排序之间存在渐近差距(min(omega,log(n)/ log(omega * M))这与RAM和大多数其他模型(其中渐近成本相同)形成对比,我们还显示了对n * n的Omega(omega * n ^ 2 / M)钻石DAG进行计算的下界,表示快速读取无法实现渐近改善,但是,我们表明对于最小编辑距离问题(及相关问题),这似乎是钻石DAG,我们可以用仅O(omega * n ^ 2 /(M * min(omega ^ {1/3},M ^ {1/2}))成本的算法克服这个下限。为此,我们使用了严格的DAG计算中禁止的“路径草图”技术。最后,我们为最短路径问题,最小生成树和其他问题显示了几个有趣的上限。许多上限的一个共同主题是,它们需要冗余计算,并且需要在读写之间进行权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号