首页> 外文OA文献 >Maximal Partition Logic: Towards a Logical Characterization of Copyless Cost Register Automata
【2h】

Maximal Partition Logic: Towards a Logical Characterization of Copyless Cost Register Automata

机译:最大分区逻辑:迈向无复制成本寄存器自动机的逻辑特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

It is highly desirable for a computational model to have a logic characterization like in the seminal work from Buchi that connects MSO with finite automata. For example, weighted automata are the quantitative extension of finite automata for computing functions over words and they can be naturally characterized by a subframent of weighted logic introduced by Droste and Gastin. Recently, cost register automata (CRA) were introduced by Alur et al. as an alternative model for weighted automata. In hope of finding decidable subclasses of weighted automata, they proposed to restrict their model with the so-called copyless restriction. Unfortunately, copyless CRA do not enjoy good closure properties and, therefore, a logical characterization of this class seems to be unlikely.In this paper, we introduce a new logic called maximal partition logic (MPL) for studying the expressiveness of copyless CRA. In contrast from the previous approaches (i.e. weighted logics), MPL is based on a new set of "regular" quantifiers that partition a word into maximal subwords, compute the output of a subformula over each subword separately, and then aggregate these outputs with a semiring operation. We study the expressiveness of MPL and compare it with weighted logics. Furthermore, we show that MPL is equally expressive to a natural subclass of copyless CRA. This shows the first logical characterization of copyless CRA and it gives a better understanding of the copyless restriction in weighted automata.
机译:非常需要计算模型具有像Buchi的开创性著作中那样的逻辑特征,该著作将MSO与有限自动机连接起来。例如,加权自动机是用于在单词上计算函数的有限自动机的定量扩展,它们自然可以由Droste和Gastin引入的加权逻辑子帧来表征。最近,Alur等人引入了成本登记自动机(CRA)。作为加权自动机的替代模型。为了希望找到加权自动机的可判定子类,他们建议使用所谓的“无复制限制”来限制其模型。不幸的是,无副本CRA不具有良好的闭包特性,因此,此类逻辑似乎不太可能。在本文中,我们引入了一种称为最大分区逻辑(MPL)的新逻辑,用于研究无副本CRA的表现力。与以前的方法(即加权逻辑)相比,MPL基于一组新的“常规”量词,这些量词将一个单词划分为最大子词,分别计算每个子词的子公式输出,然后将这些输出与半环操作。我们研究了MPL的表达,并将其与加权逻辑进行了比较。此外,我们表明MPL同样表示无复制CRA的自然子类。这显示了无副本CRA的第一个逻辑特征,它使您可以更好地理解加权自动机中的无副本限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号