首页> 外文OA文献 >On the Complexity of Matching Cut in Graphs of Fixed Diameter
【2h】

On the Complexity of Matching Cut in Graphs of Fixed Diameter

机译:关于固定直径图匹配切割的复杂性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a graph, a matching cut is an edge cut that is a matching. Matching Cut is the problem of deciding whether or not a given graph has a matching cut, which is known to be NP-complete even when restricted to bipartite graphs. It has been proved that Matching Cut is polynomially solvable for graphs of diameter two. In this paper, we show that, for any fixed integer d geq 4, Matching Cut is NP-complete in the class of graphs of diameter d. This almost resolves an open problem posed by Borowiecki and Jesse-Józefczyk in [Matching cutsets in graphs of diameter 2, Theoretical Computer Science 407 (2008) 574-582]. We then show that, for any fixed integer d geq 5, Matching Cut is NP-complete even when restricted to the class of bipartite graphs of diameter d. Complementing the hardness results, we show that Matching Cut is in polynomial-time solvable in the class of bipartite graphs of diameter at most three, and point out a new and simple polynomial-time algorithm solving Matching Cut in graphs of diameter 2.
机译:在图形中,匹配切口是作为匹配的边缘切口。匹配割是确定给定图是否具有匹配割的问题,即使仅限于二部图,该割也被认为是NP完全的。已经证明,对于直径为2的图,“匹配切”是多项式可解的。在本文中,我们证明了,对于任何固定的整数d geq 4,Matching Cut在直径d的图类中都是NP完全的。这几乎解决了Borowiecki和Jesse-Józefczyk在[在直径2的图中匹配切点,理论计算机科学407(2008)574-582]中提出的一个开放性问题。然后,我们表明,对于任何固定的整数d geq 5,即使限于直径为d的二部图类,“匹配切割”也是NP完全的。补充硬度结果,我们证明Matching Cut在最多三个直径的二部图类中是多项式时间可解的,并指出了一种新的简单的多项式时间算法来求解直径2的图中的Matching Cut。

著录项

  • 作者

    Le Hoang-Oanh; Le Van Bang;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号