This paper proposes a construction for collision resistant $2n$-bit hash functions, based on $n$-bit block ciphers with $2n$-bit keys. The construction is analysed in the ideal cipher model; for $n=128$ an adversary would need roughly $2^{122}$ units of time to find a collision. The construction employs ``combinatorialu27u27 hashing as an underlying building block (like Universal Hashing for cryptographic message authentication by Wegman and Carter). The construction runs at rate~1, thus improving on a similar rate~1/2 approach by Hirose (FSE 2006).
展开▼
机译:本文基于具有$ 2n $位密钥的$ n $位分组密码,提出了一种抗冲突的$ 2n $位哈希函数的构造。在理想密码模型中分析了构造;对于$ n = 128 $,对手需要大约$ 2 ^ {122} $的时间单位才能找到冲突。该构造使用``组合 u27 u27散列作为基础构建块(例如Wegman和Carter进行密码消息身份验证的通用散列)。建造速度为〜1,因此以Hirose(FSE 2006)的类似比率〜1/2进行了改进。
展开▼