首页> 外文OA文献 >Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network
【2h】

Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network

机译:具有多通道残差的三维磁共振图像的去噪   学习卷积神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The denoising of magnetic resonance (MR) images is a task of great importancefor improving the acquired image quality. Many methods have been proposed inthe literature to retrieve noise free images with good performances. Howerever,the state-of-the-art denoising methods, all needs a time-consuming optimizationprocesses and their performance strongly depend on the estimated noise levelparameter. Within this manuscript we propose the idea of denoising MRI Riciannoise using a convolutional neural network. The advantage of the proposedmethodology is that the learning based model can be directly used in thedenosing process without optimization and even without the noise levelparameter. Specifically, a ten convolutional layers neural network combinedwith residual learning and multi-channel strategy was proposed. Two trainingways: training on a specific noise level and training on a general level wereconducted to demonstrate the capability of our methods. Experimental resultsover synthetic and real 3D MR data demonstrate our proposed network can achievesuperior performance compared with other methods in term of both of the peaksignal to noise ratio and the global of structure similarity index. Withoutnoise level parameter, our general noise-applicable model is also better thanthe other compared methods in two datasets. Furthermore, our training modelshows good general applicability.
机译:磁共振(MR)图像的去噪是提高采集图像质量的重要任务。在文献中已经提出了许多方法来检索具有良好性能的无噪声图像。然而,最新的去噪方法都需要耗时的优化过程,并且它们的性能强烈取决于估计的噪声水平参数。在此手稿中,我们提出了使用卷积神经网络对MRI Riciannoise进行降噪的想法。所提出的方法的优点在于,基于学习的模型可以直接用于去噪过程中,而无需优化甚至没有噪声水平参数。提出了一种结合残差学习和多通道策略的十层卷积神经网络。进行了两种培训:分别针对特定噪声水平的培训和针对一般噪声的培训,以证明我们的方法的能力。在合成和真实3D MR数据上的实验结果表明,我们提出的网络在峰值信噪比和整体结构相似性指标两方面都可以达到优于其他方法的性能。在没有噪声级别参数的情况下,我们的通用噪声模型也优于两个数据集中的其他比较方法。此外,我们的训练模型显示出良好的一般适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号