首页> 外文OA文献 >Tensor Product Generation Networks for Deep NLP Modeling
【2h】

Tensor Product Generation Networks for Deep NLP Modeling

机译:用于深度NLp建模的张量产品生成网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a new approach to the design of deep networks for natural languageprocessing (NLP), based on the general technique of Tensor ProductRepresentations (TPRs) for encoding and processing symbol structures indistributed neural networks. A network architecture --- the Tensor ProductGeneration Network (TPGN) --- is proposed which is capable in principle ofcarrying out TPR computation, but which uses unconstrained deep learning todesign its internal representations. Instantiated in a model for image-captiongeneration, TPGN outperforms LSTM baselines when evaluated on the COCO dataset.The TPR-capable structure enables interpretation of internal representationsand operations, which prove to contain considerable grammatical content. Ourcaption-generation model can be interpreted as generating sequences ofgrammatical categories and retrieving words by their categories from a planencoded as a distributed representation.
机译:我们基于Tensor产品表示(TPR)的通用技术来编码和处理分布式神经网络的符号结构,提出了一种用于自然语言处理(NLP)的深度网络设计的新方法。提出了一种网络架构-Tensor ProductGeneration Network(TPGN)-原则上能够进行TPR计算,但使用不受约束的深度学习来设计其内部表示。 TPGN在用于图像字幕生成的模型中实例化,在COCO数据集上进行评估时,其性能优于LSTM基线。具有TPR功能的结构能够解释内部表示和操作,事实证明该语法和内容相当可观。我们的字幕生成模型可以解释为生成语法类别的序列,并从类别编码为分布式表示的单词中按类别检索单词。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号