首页> 外文OA文献 >Fault-tolerance thresholds for the surface code with fabrication errors
【2h】

Fault-tolerance thresholds for the surface code with fabrication errors

机译:具有制造误差的表面代码的容错阈值

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The construction of topological error correction codes requires the abilityto fabricate a lattice of physical qubits embedded on a manifold with anon-trivial topology such that the quantum information is encoded in the globaldegrees of freedom (i.e. the topology) of the manifold. However, themanufacturing of large-scale topological devices will undoubtedly suffer fromfabrication errors---permanent faulty components such as missing physicalqubits or failed entangling gates---introducing permanent defects into thetopology of the lattice and hence significantly reducing the distance of thecode and the quality of the encoded logical qubits. In this work we investigatehow fabrication errors affect the performance of topological codes, using thesurface code as the testbed. A known approach to mitigate defective latticesinvolves the use of primitive SWAP gates in a long sequence of syndromeextraction circuits. Instead, we show that in the presence of fabricationerrors the syndrome can be determined using the supercheck operator approachand the outcome of the defective gauge stabilizer generators without anyadditional computational overhead or the use of SWAP gates. We report numericalfault-tolerance thresholds in the presence of both qubit fabrication and gatefabrication errors using a circuit-based noise model and the minimum-weightperfect matching decoder. Our numerical analysis is most applicable to 2Dchip-based technologies, but the techniques presented here can be readilyextended to other topological architectures. We find that in the presence of 8%qubit fabrication errors, the surface code can still tolerate a computationalerror rate of up to 0.1%.
机译:拓扑错误校正码的构造要求能够制造具有非平凡拓扑的,嵌入在歧管中的物理量子位的晶格,从而以歧管的全局自由度(即拓扑)来编码量子信息。但是,大规模拓扑设备的制造无疑会遭受制造错误的困扰-永久性的故障组件,例如缺少物理量子位或纠结的浇口-将永久性缺陷引入晶格拓扑中,从而显着减少了代码的距离和质量编码的逻辑量子位。在这项工作中,我们使用表面代码作为测试平台,研究制造错误如何影响拓扑代码的性能。减轻缺陷晶格的已知方法涉及在较长的校正子提取电路序列中使用原始SWAP门。相反,我们表明,在存在制造错误的情况下,可以使用超级检查算子方法和有缺陷的轨距稳定器生成器的结果确定症候群,而无需任何其他计算开销或使用SWAP门。我们报告了使用基于电路的噪声模型和最小权重完美匹配解码器同时存在量子比特制造和门制造误差的情况下的数字容错阈值。我们的数值分析最适用于基于2Dchip的技术,但此处介绍的技术可以很容易地扩展到其他拓扑体系结构。我们发现,在存在8%量子比特的制造错误的情况下,表面代码仍然可以容忍高达0.1%的计算错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号