首页> 外文OA文献 >Finite-temperature phase diagram and critical point of the Aubry pinned-sliding transition in a 2D monolayer
【2h】

Finite-temperature phase diagram and critical point of the Aubry pinned-sliding transition in a 2D monolayer

机译:aubry的有限温度相图和临界点   2D单层中的固定滑动过渡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Aubry unpinned--pinned transition in the sliding of two incommensuratelattices occurs for increasing mutual interaction strength in one dimension($1D$) and is of second order at $T=0$, turning into a crossover at nonzerotemperatures. Yet, real incommensurate lattices come into contact in twodimensions ($2D$), at finite temperature, generally developing a mutualNovaco-McTague misalignment, conditions in which the existence of a sharptransition is not clear. Using a model inspired by colloid monolayers in anoptical lattice as a test $2D$ case, simulations show a sharp Aubry transitionbetween an unpinned and a pinned phase as a function of corrugation. Unlike$1D$, the $2D$ transition is now of first order, and, importantly, remains welldefined at $T>0$. It is heavily structural, with a local rotation of moir\'epattern domains from the nonzero initial Novaco-McTague equilibrium angle tonearly zero. In the temperature ($T$) -- corrugation strength ($W_0$) plane,the thermodynamical coexistence line between the unpinned and the pinned phasesis strongly oblique, showing that the former has the largest entropy. Thisfirst-order Aubry line terminates with a novel critical point $T=T_c$, markedby a susceptibility peak. The expected static sliding friction upswing betweenthe unpinned and the pinned phase decreases and disappears upon heating from$T=0$ to $T=T_c$. The experimental pursuit of this novel scenario is proposed.
机译:在两个不相称晶格的滑动中发生奥伯瑞非固定-固定过渡是为了增加一维的相互作用强度($ 1D $),并且在$ T = 0 $处是二阶的,在非零温度下变成交叉。然而,真正的不相称的晶格在有限的温度下以二维($ 2D $)接触,通常会出现新的Novaco-McTague错位,并且不清楚存在急剧转变的条件。使用在光学晶格中受胶体单分子层启发的模型作为测试$ 2D $的情况,模拟显示出在固定相和固定相之间的急剧Aubry转换是波纹的函数。与$ 1D $不同,$ 2D $转换现在是一阶的,而且重要的是,在$ T> 0 $时仍保持良好的定义。它具有很高的结构性,从非零初始Novaco-McTague平衡角到零的莫尔花纹域局部旋转。在温度($ T $)-波纹强度($ W_0 $)平面中,未固定相和固定相之间的热力学共存线强烈倾斜,表明前者具有最大的熵。该一阶Aubry线以一个新的临界点$ T = T_c $终止,该临界点由磁化率峰标记。当从$ T = 0 $加热到$ T = T_c $时,未固定相和固定相之间的预期静态滑动摩擦上升减小并消失。提出了对这种新颖方案的实验追求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号