首页> 外文OA文献 >The combination of GNSS-levelling data and gravimetric (quasi-) geoid heights in the presence of noise
【2h】

The combination of GNSS-levelling data and gravimetric (quasi-) geoid heights in the presence of noise

机译:在存在噪声的情况下,GNSS水准测量数据与重力(准)大地水准面高度的组合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a methodology for the combination of a gravimetric (quasi-) geoid with GNSS-levelling data in the presence of noise with correlations and/or spatially varying noise variances. It comprises two steps: first, a gravimetric (quasi-) geoid is computed using the available gravity data, which, in a second step, is improved using ellipsoidal heights at benchmarks provided by GNSS once they have become available. The methodology is an alternative to the integrated processing of all available data using least-squares techniques or least-squares collocation. Unlike the corrector-surface approach, the pursued approach guarantees that the corrections applied to the gravimetric (quasi-) geoid are consistent with the gravity anomaly data set. The methodology is applied to a data set comprising 109 gravimetric quasi-geoid heights, ellipsoidal heights and normal heights at benchmarks in Switzerland. Each data set is complemented by a full noise covariance matrix. We show that when neglecting noise correlations and/or spatially varying noise variances, errors up to 10% of the differences between geometric and gravimetric quasi-geoid heights are introduced. This suggests that if high-quality ellipsoidal heights at benchmarks are available and are used to compute an improved (quasi-) geoid, noise covariance matrices referring to the same datum should be used in the data processing whenever they are available. We compare the methodology with the corrector-surface approach using various corrector surface models. We show that the commonly used corrector surfaces fail to model the more complicated spatial patterns of differences between geometric and gravimetric quasi-geoid heights present in the data set. More flexible parametric models such as radial basis function approximations or minimum-curvature harmonic splines perform better. We also compare the proposed method with generalized least-squares collocation, which comprises a deterministic trend model, a random signal component and a random correlated noise component. Trend model parameters and signal covariance function parameters are estimated iteratively from the data using non-linear least-squares techniques. We show that the performance of generalized least-squares collocation is better than the performance of corrector surfaces, but the differences with respect to the proposed method are still significant.
机译:我们提出了一种在重力存在相关性和/或空间变化的噪声方差的情况下将重力(准)大地水准面与GNSS水准数据相结合的方法。它包括两个步骤:首先,使用可用的重力数据计算重力(准)大地水准面,第二步,使用GNSS提供的基准处的椭球高度对其进行改进。该方法是使用最小二乘法或最小二乘配置对所有可用数据进行综合处理的替代方法。与校正器表面方法不同,所追求的方法可确保应用于重力(准)大地水准面的校正与重力异常数据集一致。将该方法应用于瑞士基准点上的109个称重准地壳高度,椭球体高度和法向高度的数据集。每个数据集都有一个完整的噪声协方差矩阵来补充。我们表明,当忽略噪声相关性和/或空间变化的噪声方差时,引入的误差高达几何和重力准类星体高度之差的10%。这表明,如果可以使用基准处的高质量椭圆体高度并将其用于计算改进的(准)大地水准面,则在数据处理中只要有可用数据,就应使用引用相同基准的噪声协方差矩阵。我们将使用各种校正器表面模型的方法与校正器表面方法进行比较。我们表明,常用的校正器曲面无法对数据集中存在的几何和重力准类星体高度之间的差异进行更复杂的空间模式建模。诸如径向基函数逼近或最小曲率谐波样条曲线等更灵活的参数模型表现更好。我们还将提出的方法与广义最小二乘搭配进行比较,广义最小二乘搭配包括确定性趋势模型,随机信号分量和随机相关噪声分量。趋势模型参数和信号协方差函数参数是使用非线性最小二乘法从数据中反复估算的。我们表明,广义最小二乘配置的性能要好于校正器表面的性能,但是相对于所提出的方法而言,差异仍然很大。

著录项

  • 作者

    Klees, R.; Prutkin, I.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号