首页> 外文OA文献 >Advanced Steel Microstructure Classification by Deep Learning Methods
【2h】

Advanced Steel Microstructure Classification by Deep Learning Methods

机译:深度学习方法的先进钢微观结构分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The inner structure of a material is called microstructure. It stores thegenesis of a material and determines all its physical and chemical properties.While microstructural characterization is widely spread and well known, themicrostructural classification is mostly done manually by human experts, whichopens doors for huge uncertainties. Since the microstructure could be acombination of different phases with complex substructures its automaticclassification is very challenging and just a little work in this field hasbeen carried out. Prior related works apply mostly designed and engineeredfeatures by experts and classify microstructure separately from featureextraction step. Recently Deep Learning methods have shown surprisingly goodperformance in vision applications by learning the features from data togetherwith the classification step. In this work, we propose a deep learning methodfor microstructure classification in the examples of certain microstructuralconstituents of low carbon steel. This novel method employs pixel-wisesegmentation via Fully Convolutional Neural Networks (FCNN) accompanied bymax-voting scheme. Our system achieves 93.94% classification accuracy,drastically outperforming the state-of-the-art method of 48.89% accuracy,indicating the effectiveness of pixel-wise approaches. Beyond the successpresented in this paper, this line of research offers a more robust and firstof all objective way for the difficult task of steel quality appreciation.
机译:材料的内部结构称为微结构。它存储材料的发生并确定其所有物理和化学性质。尽管微观结构表征已广为人知,但微观结构分类大多是由人类专家手动完成的,这为巨大的不确定性打开了大门。由于微观结构可能是不同相与复杂亚结构的组合,因此其自动分类非常具有挑战性,在该领域仅进行了少量工作。先前的相关工作主要采用专家设计和制造的功能,并与特征提取步骤分开对微观结构进行分类。最近,通过从数据中学习特征以及分类步骤,深度学习方法在视觉应用中已显示出令人惊讶的良好性能。在这项工作中,我们以低碳钢的某些显微组织成分为例,提出了一种用于显微组织分类的深度学习方法。这种新颖的方法通过完全卷积神经网络(FCNN)采用像素逐段分割,并伴有最大投票方案。我们的系统实现了93.94%的分类精度,大大优于48.89%的最新方法,表明了像素级方法的有效性。除了本文所介绍的成功之外,这一研究领域还为钢铁质量评估这一艰巨的任务提供了更可靠,最客观的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号