首页> 外文OA文献 >Random Walk Models of Network Formation and Sequential Monte Carlo Methods for Graphs
【2h】

Random Walk Models of Network Formation and Sequential Monte Carlo Methods for Graphs

机译:网络形成和序贯蒙特卡罗的随机游走模型   图的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a class of network models that insert edges by connecting thestarting and terminal vertices of a random walk on the network graph. Withinthe taxonomy of statistical network models, this class is distinguished bypermitting the location of a new edge to explicitly depend on the structure ofthe graph, but being nonetheless statistically and computationally tractable.In the limit of infinite walk length, the model converges to an extension ofthe preferential attachment model---in this sense, it can be motivatedalternatively by asking what preferential attachment is an approximation to.Theoretical properties, including the limiting degree sequence, are studiedanalytically. If the entire history of the graph is observed, parameters can beestimated by maximum likelihood. If only the final graph is available, itshistory can be imputed using MCMC. We develop a class of sequential Monte Carloalgorithms that are more generally applicable to sequential random graphmodels, and may be of interest in their own right. The model parameters can berecovered from a single graph generated by the model. Applications to dataclarify the role of the random walk length as a length scale of interactionswithin the graph.
机译:我们介绍了一种网络模型,该模型通过连接网络图上随机游走的起点和终点来插入边。在统计网络模型的分类法中,此类的区别在于允许新边的位置明确依赖于图的结构,但在统计和计算上都是易处理的。在无限游程长度的限制下,模型收敛到模型的扩展。优先依恋模型-从这个意义上讲,它可以通过询问优先依恋是什么而被激发。分析性地研究了包括极限度序列在内的理论性质。如果观察到图形的整个历史记录,则可以通过最大似然估计参数。如果只有最终图形可用,则可以使用MCMC估算其历史。我们开发了一类顺序蒙特卡洛算法,它通常更适用于顺序随机图模型,并且可能对它们本身很感兴趣。可以从由模型生成的单个图形中恢复模型参数。在数据中阐明随机游走长度作为图中相互作用的长度尺度的作用的应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号