首页> 外文OA文献 >A spatial compositional model (SCM) for linear unmixing and endmember uncertainty estimation
【2h】

A spatial compositional model (SCM) for linear unmixing and endmember uncertainty estimation

机译:用于线性分离和端元的空间组合模型(sCm)   不确定性评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The normal compositional model (NCM) has been extensively used inhyperspectral unmixing. However, most of the previous research has focused onestimation of endmembers and/or their variability. Also, little work hasemployed spatial information in NCM. In this paper, we show that NCM can beused for calculating the uncertainty of the estimated endmembers with spatialpriors incorporated for better unmixing. This results in a spatialcompositional model (SCM) which features (i) spatial priors that forceneighboring abundances to be similar based on their pixel similarity and (ii) aposterior that is obtained from a likelihood model which does not assume pixelindependence. The resulting algorithm turns out to be easy to implement andefficient to run. We compared SCM with current state-of-the-art algorithms onsynthetic and real images. The results show that SCM can in the main providemore accurate endmembers and abundances. Moreover, the estimated uncertaintycan serve as a prediction of endmember error under certain conditions.
机译:正常成分模型(NCM)已广泛用于高光谱解混中。但是,大多数以前的研究都集中于对端成员和/或其变异性的估计。而且,很少有工作在NCM中使用空间信息。在本文中,我们证明了NCM可用于计算估计末端成员的不确定性,并结合空间优先级以更好地分解。这导致空间组成模型(SCM),其特征在于:(i)基于其像素相似度迫使相邻丰度相似的空间先验,以及(ii)从不假设像素独立的似然模型获得的后验。结果证明,该算法易于实现且运行高效。我们将SCM与合成和真实图像上的最新算法进行了比较。结果表明,SCM主要可以提供更准确的端成员和数量。此外,在某些条件下,估计的不确定性可以作为对端构件误差的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号