首页> 外文OA文献 >Deep Learning for Short-Term Traffic Flow Prediction
【2h】

Deep Learning for Short-Term Traffic Flow Prediction

机译:短期交通流预测的深度学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We develop a deep learning model to predict traffic flows. The maincontribution is development of an architecture that combines a linear modelthat is fitted using $\ell_1$ regularization and a sequence of $\tanh$ layers.The challenge of predicting traffic flows are the sharp nonlinearities due totransitions between free flow, breakdown, recovery and congestion. We show thatdeep learning architectures can capture these nonlinear spatio-temporaleffects. The first layer identifies spatio-temporal relations among predictorsand other layers model nonlinear relations. We illustrate our methodology onroad sensor data from Interstate I-55 and predict traffic flows during twospecial events; a Chicago Bears football game and an extreme snowstorm event.Both cases have sharp traffic flow regime changes, occurring very suddenly, andwe show how deep learning provides precise short term traffic flow predictions.
机译:我们开发了深度学习模型来预测流量。主要贡献是开发了一种架构,该架构结合了使用$ \ ell_1 $正则化和$ \ tanh $层序列拟合的线性模型。预测流量的挑战是由于自由流,故障,恢复和恢复之间的转换而导致的尖锐非线性。拥塞。我们证明了深度学习架构可以捕获这些非线性的时空效应。第一层识别预测变量之间的时空关系,其他层则建模非线性关系。我们说明了来自I-55号州际公路的道路传感器数据的方法,并预测了两次特殊事件期间的交通流量;这两种情况下的交通流量都发生了急剧变化,而且变化非常突然,并且我们展示了深度学习如何提供精确的短期交通流量预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号